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a b s t r a c t

In this study, we present a particle batch smoother (PBS) to determine soil moisture profiles by assimilating

soil temperatures at two depths (4 and 8 cm). The PBS can be considered as an extension of the standard

particle filter (PF) in which soil moisture is updated within a window of fixed length using all observed soil

temperatures in that window. This approach was developed with a view to assimilating temperature observa-

tions from distributed temperature sensing (DTS) observations, a technique which can provide temperature

observations every meter or less along cables up to kilometers in length. Here, the PBS approach is tested

using soil moisture and temperature, and meteorological data from an experimental site in Citra, Florida.

Results demonstrate that the PBS provides a statistically significant improvement in estimated soil moisture

compared to the PF, with only a marginal increase in computational expense (<3% of CPU time). This confirms

that assimilating a sequence of temperature observations yields a better soil moisture estimate compared to

sequential assimilation of individual temperature observations. The impact of observation interval was in-

vestigated for both PF and PBS, and the optimal window length was determined for the PBS. While increasing

the observation interval is essential to maintain the spread of particle values in the PF, the PBS performance

is best when all available observations are assimilated.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

In recent years, several novel measurement techniques have been

eveloped to provide insight into soil moisture scaling between

oint scale and satellite footprint scale [1]. These techniques include

osmic-ray soil moisture probe, e.g. [2–4], GPS reflectometry, e.g.

5,6] and distributed temperature sensing (DTS), e.g. [7–9].

This study is motivated by the potential use of passive DTS to

onitor soil moisture. DTS is an advanced temperature measurement

echnique using fiber optic cables. Using DTS, temperature observa-

ions with an accuracy of 0.1 °C, temporal resolution of 1 min and

patial resolution of 1 m can be easily achieved along kilometers of

ables [10,11]. Dong et al. [12] demonstrated that soil temperature

an be used to directly update soil moisture estimates in a data as-

imilation system. The prior estimated soil moisture and tempera-

ure profiles from a fully coupled soil vapor, heat and water transport

odel were updated by sequentially assimilating temperature obser-

ations at surface layers using an ensemble Kalman filter (EnKF) [13].
∗ Corresponding author. Tel.: +31(0)152783156.
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he EnKF assumes the model-prior to be Gaussian distribution, and

nly uses the first two moments of the distribution (i.e. the mean

nd the variance). As a result, the EnKF can yield spurious estimates,

articularly when the Gaussian assumption is violated [14]. Particle

pproaches are considered here because they approximate the en-

ire model posterior distribution using Monte Carlo sampling. Thus,

nstead of preserving just the first two moments of the distribution,

hey also track the higher moments [15,16]. Particle filters have been

sed to estimate soil moisture and for model parameter estimation,

.g. [17–19]. They have also been successfully applied in streamflow

stimation, e.g. [16, 20, 21].

Particle filtering is not without limitations. One potential disad-

antage is that it often requires more particles to obtain the same

ccuracy as an EnKF with fewer ensemble members [21]. Early ap-

lications in hydrology illustrated that resampling could improve the

erformances of the PF [16]. Resampling the particles after each up-

ate involves discarding the particles with negligible weights to avoid

article degeneration. More recently, the Markov chain Monte Carlo

MCMC) algorithm has increasingly been included in particle filtering

o improve the performance of the PF with a limited number of parti-

les [15,20,22]. It explores the space around the particles and accepts/

ejects new proposed particles using the Metropolis algorithm. This
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MCMC technique essentially increases the variability of the particle

values and allows for better exploration of the state/parameter space.

Another alternative is to provide a better proposition density during

the weight updating, i.e. to sample more intensively at the locations

with larger likelihoods. The proposal distribution is usually calculated

using some variant of the Kalman filter [15,23]. This algorithm is par-

ticularly suitable for the cases when the particles with larger likeli-

hoods are at the tails of the prior distribution and is therefore partic-

ularly suited to soil moisture estimation [15]. Here, we will consider

the particle filter as outlined by Moradkhani et al. [16].

In addition to considering particle approaches rather than ensem-

ble approaches, this study will investigate the potential benefit of us-

ing smoothing rather than filtering for this problem. The hypothesis

is that series of temperature observations at different depths can be

used to monitor the propagation of a thermal wave from the surface

into the soil. This propagation is controlled by the thermal properties

of the soil, temporal variations in which are dominated by soil mois-

ture at a given location. Hence, assimilating a series of temperature

observations should give us more information on soil moisture than

sequential assimilation of instantaneous temperature measurements.

This is a similar rationale to the application of variational methods (a

type of smoothing) to assimilate series of surface soil temperatures

to estimate surface energy fluxes, e.g. [24–26].

In this study, we will present the derivation of the particle

smoother algorithm (PBS) and show how it relates to the PF. A parti-

cle batch smoother has recently been applied to assimilate remotely-

sensed fractional snow covered area data into a land surface model

to estimate the snow water equivalent [27]. Here, it will be used to

estimate soil moisture by assimilating soil temperature profile ob-

servations. In the PBS all temperature observations within a certain

window are assimilated in a batch to estimate the evolution of soil

moisture within this window.

We will first demonstrate that sequential data assimilation based

on particle approaches (PF) can be used to determine moisture by as-

similating temperature observations. Then, the optimal observation

interval in the PF will be investigated. Next, we will demonstrate that

batch smoothing (PBS) outperforms the sequential assimilation (PF)

when the same temperature information was used. The optimal as-

similation strategy (e.g. observation interval and window length) will

be determined for the PBS, and this “optimal” PBS will be compared

with the “optimal” PF. Finally, the computational cost of the two algo-

rithms will be compared. Data from in-situ point sensors were used

to determine the optimal window length and observation interval for

the PBS, and to demonstrate that it outperforms the standard PF.

2. Method and materials

2.1. Hydrus-1D model

In this study, the vertical soil water, heat and vapor transport pro-

cesses in the unsaturated zone are simulated using the Hydrus-1D

model [28]. One-dimensional liquid and vapor flow are given by:

∂θ

∂t
= ∂

∂z

[
KTh

∂hp

∂z
+ KLh + KTT

∂T

∂z

]
− S (1)

where θ is soil water content (m3 m−3) at time t (s), z is the verti-

cal coordinate (positive upward) (m), hp is soil water pressure head

(m), and T is soil temperature (K). KTh and KTT are the isothermal

and thermal total hydraulic conductivities, respectively, and KLh is

the isothermal unsaturated hydraulic conductivity. S is a sink term

(m3 m−3 s−1). KLh and the soil retention curve are determined using

van Genuchten’s model [29]:

KLh = KsS
l
e

[
1 −

(
1 − S

1
m
e

)m
]2

(2)
(h) =
{

θr + θs−θr

[1+|αh|n]
m h < 0

θs h ≥ 0
(3)

here Ks is the saturated hydraulic conductivity (m s−1), Se is the ef-

ective saturation, l, m, n and α are empirical shape parameters and

r and θ s are the residual and saturated soil water contents (m3 m−3).

he parameters in Eqs. (2) and (3) were estimated using the ROSETTA

odel [30] using soil texture and bulk density(ρb) reported in

ection 2.3.

The governing equation for soil heat transport is expressed as:

∂CpT

∂t
+ L0

∂θv

∂t
= ∂

∂z

[
λ(θ )

∂T

∂z

]
− Cw

∂qLT

∂z

− L0
∂qv

∂z
− Cv

∂qvT

∂z
− CwST (4)

here Cw, Cv and Cp are the volumetric heat capacities of water, vapor

nd moist soil (J m−3 K−1), L0 is the volumetric latent heat of vapor-

zation of liquid water (J m−3), qL and qv are the flux densities of liquid

ater and vapor (m s−1), and λ(θ ) is apparent soil thermal conductiv-

ty (W m−1K−1). λ(θ ) is estimated from:

(θ ) = λ0(θ ) + βCw|qL| (5)

here β is the thermal dispersivity (m). The Hydrus-1D model is

odified to model soil thermal conductivity (λ0) using the model of

u [31]. The required parameters are soil texture and bulk density.

The “atmospheric boundary condition with surface runoff” is ap-

lied to the upper boundary, and “free drainage” is applied for the

ower boundary condition in the soil water model (Eq. (1)). The soil

urface energy balance is used as the upper boundary for the heat

ransfer, and “zero gradient” is assumed at the lower boundary. The

etails of the model and boundary descriptions are provided by [32].

n this study, the model time step is approximately 1 min, and the soil

olumn to 1 m depth is simulated with a vertical resolution of 1 cm.

.2. Sequential data assimilation

The model states of interest are soil moisture and temperature

rom the surface (0 cm) to 1 m. An ensemble of model states is

volved in parallel using the forward model:

i
t = f

(
xi

t−1, ui
t , bi

)
+ wi

t (6)

here xi
t is the model state (θ and T in this study) of the ith particle

t time t, ui
t are the perturbed forcing data, bi is a vector of time in-

ariant model parameters, wi
t is the model error, and f is the forward

odel (Hydrus-1D) [20]. The model error wi
t is assumed to be nor-

ally distributed with a standard deviation of 0.005 m3 m−3 for soil

oisture, and 0.01 K for soil temperature.

The model estimates are related to the observations by:

i
t = h

(
xi

t

)
+ vi

t (7)

here ŷi
t is the simulated observation vector, h is a nonlinear operator

elating the prior estimated states (xi
t ) to the measured variable and

i
t is the observation error [20]. The observation error is set to be 0.1 K,

ccording to the field calibration of the temperature sensors. In this

tudy, the observations are the temperatures at 4 and 8 cm.

.2.1. Particle filter

In the particle filter, the posterior distribution of the model state

an be written in recursive form as follows [22]:

p
(
xi

1:t

∣∣y1:t

)
= p

(
xi

1:t−1

∣∣y1:t−1

) p
(
xi

t

∣∣xi
1:t−1

)
p
(
yt

∣∣xi
t

)
p(yt |y1:t−1)

(8)

ntegrating out xi
1:t−1

, gives the marginal distribution [22,33]:

p
(
xi

t

∣∣y1:t

)
=

p
(
yt

∣∣xi
t

)
p
(
xi

t

∣∣y1:t−1

)
p(yt |y1:t−1)

(9)
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here y1: t is the observation vector. This equation is called the up-

ating step in which the likelihood function, p(yt |xi
t ), is used to

pdate the prior estimates. The prior estimates at time step t are

escribed as [33]:

p
(
xi

t

∣∣y1:t−1

)
=

∫
p
(
xi

t

∣∣xi
t−1

)
p
(
xi

t−1

∣∣y1:t−1

)
dxi

t−1 (10)

In the particle filter, the model state posterior density is approxi-

ated as:

p(x1:t |y1:t ) =
N∑

i=1

wi
tδ

(
x1:t − xi

1:t

)
(11)

here δ() is the Dirac delta function [34]. Because the posterior den-

ity is difficult to sample directly, importance sampling is often used

o draw particles from a known function q(x1: t|y1: t) and assign the

eights according to:

i∗
t =

p
(
xi

1:t

∣∣y1:t

)
q
(
xi

1:t

∣∣y1:t

) (12)

here wi∗
t is the importance weight. Eq. (12) can be expressed as [16]:

i∗
t ∝ wi∗

t−1

p
(
yt

∣∣xi
t

)
p
(
xi

t

∣∣xi
t−1

)
q
(
xi

t

∣∣xi
t−1

, yt

) (13)

here p(yt|xi
t ) is the likelihood, p(xi

t |xi
t−1

) is the transition prior, i.e.

he probability of moving to xi
t from xi

t−1
, and q(xi

k+1
|xi

k
, yt ) is the

roposal distribution in the importance sampling. Usually, the tran-

ition prior is used for the proposal distribution [16]. Hence, Eq. (13)

an be simplified as

i∗
t ∝ wi∗

t−1 p
(
yt

∣∣xi
t

)
(14)

he likelihood function is expressed as

p(yt|xi
t ) = 1

(2π)n/2det(R)1/2
e[−0.5(yt −ŷi

t )
T R−1(yt −ŷi

t )] (15)
ig. 1. A diagram to illustrate the Particle Filter (PF) at one updating step (upper panel) and

oving window strategy plot, the solid lines are the mean of the prior and posterior, and th

lack circles represent the observations, and the strategy of using different observation inter
here R is the error covariance of observations, and n is the number

f the observations. e.g. In this case, n = 2 (temperatures at 4 and

cm were assimilated). The normalized weight (wi
t ) is calculated as

i
t = wi∗

t∑N
i=1 wi∗

t

(16)

Fig. 1 (top panel) illustrates the PF algorithm at an update step.

nitially, the uniformly distributed weights are assigned to the parti-

les. When observations are available, the PF will update the weights

f each particle according to the prior distribution and likelihood (i.e.

q. (15)). As shown in Fig. 1(a), the PF adds weights to the particles

loser to the observation. Resampling is usually required to prevent

eight degeneration, i.e. a situation where most of the particles have

egligible weights. Moradkhani et al. [16] demonstrated that resam-

ling the posterior after each update will avoid the degeneracy prob-

em, and result in a significantly improved performance. A detailed

escription of resampling is given by Moradkhani et al. [16]. There-

ore, we also perform resampling when the particle weights are up-

ated (Fig. 1(b)), which results in updated states (Fig. 1(c)).

.2.2. Particle batch smoother

Fig. 1 (lower panel) illustrates the implementation of the PBS.

hile the PF assimilates observations sequentially, the PBS assimi-

ates all of the observations within a window in a single batch. There-

ore, the posterior density is calculated for a series of model states in

window (L) i.e. p(xt−L+1:t |y1:t ).

Similar to the PF algorithm, this marginal distribution is used to

erive the weights updating equation

i∗
t,s ∝ wi∗

t−L,s p
(
yt−L+1:t

∣∣xi
t−L+1:t

)
(17)

i
t,s = wi∗

t,s∑N
i=1 wi∗

t,s

(18)
the Particle Batch Smoother (PBS) moving window strategy (lower panel). In the PBS

e distributions of the prior and posterior are shown as the shaded red and blue area.

vals in the PBS is shown in (d) and (e) respectively.
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where the subscript s denotes smoother. The calculated weights will

be assigned to the entire window, i.e. wi
t−L+1:t,s

= wi
t,s. The likeli-

hood function is calculated based on the observations of the entire

window:

p
(
yt−L+1:t

∣∣xi
t−L+1:t

)
=

t∏
j=t−L+1

1

(2π)n/2det(R)1/2
e[−0.5(y j−ŷi

j
)T R−1(y j−ŷi

j
)]

(19)

Clearly, the PF algorithm can be considered as a special case of the

PBS algorithm where L = 1. The update procedure is the same as illus-

trated in Fig. 1, except that the state vector includes all states within

that window. After resampling, the algorithm will move to the next

window with all the weights initialized to 1/N. Different observations

intervals can be used in the PBS algorithm, as shown in Fig. 1 (d) and

(e). When a longer observation interval is used, the PBS will discard

the observations collected between the observation intervals.

2.3. Experimental data

Data from the Microwex-2 experiment will be used to test and

compare the performance of the PF and PBS. This experiment was

conducted from 17 March to 3 June 2004, by the Center for Remote

Sensing, Agricultural and Biological Engineering Department, at

the Plant Science Research and Education Unit of the University of

Florida, Gainesville. A full description of this experiment is given by

Judge et al. [35]. Soil temperature and moisture data were collected

at 5 depths (2, 4, 8, 32 and 64 cm), from 26 March. Meteorological

data (e.g. precipitation, air temperature, relative humidity and wind

speed) were collected every 15 min. The sand, silt and clay content of

89.5%, 3.4% and 7.1% mean the soil at the site is classed as sand in the

USDA soil textural classification. The corn was planted on 18 March.

Here we focus on the period with negligible biomass (26 March to

10 April).

2.4. Data assimilation set-up

The distribution assumed for each perturbed model input is

shown in Table 1. We are interested in investigating whether the

proposed algorithms can handle the biases/uncertainties in the soil

properties, when only rough soil texture classification information is

available. This is often the case in distributed temperature sensing

applications where soil texture can vary considerably over the scale

of the installation [7]. Sand and silt content were sampled uniformly

within the USDA classes of sand and sandy loam, i.e. sand from 55%

to 95% and silt from 0% to 20%. This is to represent the spatial vari-

ability of the soil texture. In a typical DTS installation, the soil class or

USDA soil texture classification might be known in general, but not

the exact soil texture at each meter of cable. Multiplicative errors dis-

tributions were used for the forcing data to avoid obtaining negative

values for precipitation, radiation, relative humidity or wind speed.

The standard deviation of the errors applied to the forcing represent

the instrument errors, and the spatial variability. Forcing data and the
Table 1

Generation of perturbed inputs (soil property and forci

Variable Error distribution

Sand (%) Uniform

Silt (%) Uniform

ρb(g cm−3) Gaussian, additive

Precipitation (m m) Gaussian, multiplicative

Radiation (W m−2) Gaussian, multiplicative

Air temperature (◦C) Gaussian, multiplicative

Relative humidity (%) Gaussian, multiplicative

Wind speed (Km h−1) Gaussian, multiplicative
oil temperature data were collected at different locations. The initial

oil moisture and temperature profile were assumed to be vertically

niform. The initial values were sampled from a uniform distribution

0.05 m3 m−3, 0.25 m3 m−3] for soil moisture, and 17 ◦C, 23 ◦C for soil

emperature. A previous synthetic study has shown that temperature

bservations at two depths in the shallow subsurface provide suffi-

ient information to estimate soil moisture using the EnKF [12]. In

his study, soil temperature observations at 4 and 8 cm were used to

pdate the full soil temperature and moisture profiles.

The objectives of this study are to demonstrate that particle-based

ata assimilation can determine soil moisture by assimilating soil

emperature observations in real world data, and that particle batch

moothing yields better results than filtering.

First, we will demonstrate that the particle filter can be used to as-

imilate soil temperature observations at two depths into the Hydrus-

D model to estimate soil moisture. In this first test, an observation

nterval of 45 min will be assumed, and the number of the particles

ill be set to be 100. Results from the PF will be compared to a model

pen loop (OL) run, which is identical to running the 100 particles

ithout performing any assimilation. Results from the PF and OL are

lso compared to in-situ observations of soil moisture throughout the

rofile.

Second, we will determine the optimal observation interval in the

F algorithm. With DTS, observations can be made every minute.

owever, assimilating these observations too frequently can limit

he range of particle values. If this becomes too small, the obser-

ation may fall outside the particle range, resulting in a poor up-

ate. To examine the impact of increasing observation intervals on

he range of particle values, we will vary this interval from 15 min to

h. Due to the limited duration of the experiment, the initial condi-

ion has a significant influence on the estimated soil moisture, par-

icularly at depth. To account for this, experiments are repeated 20

imes with different initial conditions, and the median and range of

MSE will be used to determine the optimal observation interval for

he PF.

Next, we will focus on the PBS algorithm. We will examine the

mpact of observation interval on the PBS algorithm. As in the PF,

he observation interval may affect the performance. The observa-

ion interval will be varied from 15 min to 1.5 h. In this case, a win-

ow length of 3 h will be assumed. Then we will investigate the im-

act of assumed window length on the PBS estimate. As shown in

ection 2.2, if the window length (L) is one (i.e. the window length

s equal to the observation interval), the PBS and the PF are equiv-

lent. Our hypothesis is that the evolution of temperature in time

ontains more information on soil moisture than the relationship be-

ween instantaneous soil moisture and temperature. Hence, increas-

ng the window length should lead to an improved estimate. How-

ver, increasing the length of the window increases the dimension

f the distributions to be estimated. This may increase the number

f particles required, and hence the computational expense. Main-

aining the observation interval of 15 min, the window length will be

aried from 1 to 12 h. Then we will compare the optimal particle filter

nd the optimal particle batch smoother.
ng) for each particle member.

Mean Standard deviation Bound

- - 55, 95

- - 0, 20

0 (g cm−3) 0.05 (g cm−3) -, -

1 × 0.2 -, -

1 × 0.075 -, 1350

1 × 0.05 -, -

1 × 0.05 -, 100

1 × 0.2 -, -
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Finally, we consider the number of particles required by the two

ptimal approaches. Though we expect the PBS to yield an improved

stimate, this approach may require more particles and therefore

reater computational expense. A trade-off is necessary between the

eduction in RMSE and the increase in computational demand be-

ween the two approaches. The PF and the PBS will be compared as

he number of particles is increased from 10 to 300.

. Deterministic and probabilistic performance assessment

The RMSE is calculated as follows:

MSE =
√

1

Nt

Nt∑
t=1

(θ t − θt,obs)2 (20)

here Nt is the number of total time steps that have observations, θt

s the mean of the particle estimates at time step t, and θt,obs is the

bserved soil moisture at t. The absolute bias of the estimates will

lso be calculated as:

ias =
∣∣∣∣∣ 1

Nt

Nt∑
t=1

(θ t − θt,obs)

∣∣∣∣∣ (21)

Probabilistic verification tools Quantile–Quantile (Q–Q) plot and

eliability (αr) will be used to assess the performance of the proposed

lgorithms. Probabilistic metrics are mainly concerned with whether

he uncertainty of the estimates (particle range or ensemble spread)

s appropriate, instead of the accuracy of the estimates. The quantile

f the predictive distribution is calculated at each time step [36]

t = 1

N

N∑
i=1

ki (22)

here zt is the quantile of the predictive distribution calculated at

ime t, ki = 1 when θt,obs > θt,i, and ki = 0, otherwise [37]. In the

erfect case, the cumulative distribution of zt should be the same as

he cumulative uniform distribution (U[0, 1]). If zt is clustered at the

iddle range, it indicates the uncertainty is overestimated. The un-

ertainty is underestimated when the zt clustered around the tails. In

he case that zt is constantly lower/higher than U[0, 1], it indicates

he estimates are biased [38]. Based on the Q–Q plot, the reliability

αr) of the estimates can be computed as:

r = 1 − 2

Nt

Nt∑
t=1

|zt − U[0, 1]| (23)

The reliability (αr) varies from 0 (zero reliability) to 1 (perfect re-

iability).

. Results and discussion

.1. The particle filter

Fig. 2 shows an example of the soil moisture profile estimated us-

ng the particle filter (PF) when temperature observations at 4 and

cm are assimilated every 45 min. Note that the case with a sig-

ificantly biased initial soil moisture condition is presented here. In

he DTS implementation, the soil moisture is supposed to be mea-

ured every meter up to kilometers by assimilating soil temperatures

t shallow soil depths. Hence, it is impossible to provide correct ini-

ial soil moisture profiles everywhere along the DTS installation. As

result, we are interested in the ability of the proposed data assimi-

ation approach to correct for errors in the initial condition. The first

hing to note is that the estimated soil moisture from the PF is gener-

lly closer to the observed soil moisture than that from the open loop

OL). The OL generally overestimates soil moisture at all depths. The

ange of particle values in the OL (indicated in shaded red) is due to
he sources of uncertainty described in Table 1. Because the OL esti-

ate is never constrained by observations, the impact of uncertainty

n the initial condition persists through the study interval. The range

f soil moisture values from the OL generally even exceeds the dy-

amic range of the observed soil moisture.

The greatest improvements due to the PF are observed at 4 and

cm, which are the depths at which soil temperatures were assimi-

ated. At 4 cm, the RMSE is reduced from 0.069 to 0.039 m3 m−3 and

t 8 cm it is reduced from 0.074 to 0.045 m3m−3. The soil moisture es-

imates are improved when the PF resamples the particles with larger

ikelihoods. The soil moisture estimates at 2 cm are also greatly im-

roved (from 0.060 to 0.037 m3 m−3 ), primarily by resampling the

articles that provide larger likelihoods at 4 and 8 cm. This resam-

ling also has a significant impact on the range of particles. It gener-

lly takes about a day for the PF to shed the influence of the uncertain

nitial condition. Due to uncertainty in precipitation, the range in soil

oisture between 2 and 8 cm from the PF increases after precipita-

ion. Assimilation with the PF has limited impact at 32 and 64 cm

Fig. 2 (d) and (e)). Because of the sandy soil and high evapora-

ive demand, there is little variability in soil moisture in response to

recipitation at these depths. The estimated soil moisture is largely

etermined by the prescribed initial condition. The lack of correla-

ion between soil moisture and temperature at this depth means that

ssimilation is ineffective. The only manner in which soil moisture at

hese depths is corrected is through the eventual impact of the up-

ated surface (2 to 8 cm) soil moisture on the lower layers through

he model physics. The lower soil moisture values in the PF com-

ared to the OL between 2 and 8 cm eventually lead to drier soil at

2 cm (after April 1) and 64 cm (after April 3). Fig. 3 gives some ad-

itional insight into how and when the PF is most effective in updat-

ng soil moisture. Fig. 3(a) and (b) show the influence of uncertainty

n shortwave radiation and soil texture on the soil temperatures at

and 8 cm. The spread of particle values is largest during sunlight

ours and at a maximum in the afternoon. Fig. 3(c) shows the spread

f particle values of soil moisture after a precipitation event. Note

hat the PF is ineffective until just before noon when the spread of

emperature values is large enough for the PF to update temperature

nd hence soil moisture. This is also apparent at 8 cm (Fig. 3(d)). This

xplains why the soil moisture estimated in the PF is not updated im-

ediately after precipitation in Fig. 2.

Fig. 4 shows the impact of observation interval on the perfor-

ance of the PF. From Fig. 2, it is clear that the initial condition can in-

uence the estimate, particularly at depth. Therefore, results for this

xperiment are presented in terms of box plots constructed using 20

ases, each of which has a different initial condition. Hence, Fig. 4 also

rovides insight into the robustness of the PF to different initial con-

itions. From 2 to 8 cm (Fig. 4 (a)–(c)), the median RMSE from the PF

s always lower than that of the OL. At greater depth (Fig. 4(d) and

e)), the median RMSE is close to that of the OL regardless of the ob-

ervation interval. The range of RMSE values is also larger than that

loser to the surface. Recall that the particle range of soil moisture at

epths reduces dramatically after a few updates. The limited influ-

nce of precipitation and temperature at depth mean that the parti-

le range at depths will not grow again. Therefore, if the initial dis-

ribution of particles leads to the PF updating soil moisture towards

n incorrect value, it is difficult to correct the estimates towards the

bservations. At 32 and 64 cm, Fig. 4 shows that the estimated soil

oisture can even be worse than that from the OL.

With less frequent assimilation, the median PF RMSE approaches

hat of the OL. Assimilating more often than every 45 min yields little

mprovement in terms of median RMSE, but the interquartile range

IQR) and full range of values is often higher at lower observation in-

ervals. The particle filter can only adjust the weights of particles, so

he range of particle values must be wide enough to include the true

alue if the estimate is to be correct. Because the observation error

s very small in this study, assimilating too frequently prevents the
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Fig. 2. Comparison of soil moisture estimated by the open loop (OL) and the particle filter (PF) with observations at 5 depths. The PF algorithm in this case updates soil moisture

using temperature observations every 45 min. The Solid lines for the OL and the PF are the mean of the particles. The shaded area are the range of the particles for the OL (red) and

the PF (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

r

3

P

e

3

v

w

l

a

P

4

a

3

i

t

t

H

t

l

o

range of values from growing and can therefore yield a poorer esti-

mate. Though no distinct RMSE minimum is shown in Fig. 4 between

an assimilation interval of 30 to 120 min, the IQR seems to be the

minimum when assimilation interval is 45 min. For the purpose of

comparison, 45 min is considered to be the optimal observation in-

terval for the PF, which will be compared with the PBS estimates.

4.2. The particle batch smoother

First, we will compare the PF and the PBS algorithms assuming

they both use an observation interval of 45 min (PF-45min and PBS-

45min in Table 2). The window length for the PBS is 3 h, i.e. the PBS

will update temperature and soil moisture every 45 min in a 3 h win-

dow using all temperature observations (at 4 and 8 cm) within that

window. Table 2 shows the RMSE of soil moisture estimated using the

PF and the PBS. The PBS results in a statistically significant reduction

in RMSE compared to the PF (using a two-tailed paired T-test, p <

0.05). This is analogous to the improvement observed by using an en-

semble batch smoother compared to an ensemble Kalman filter (e.g.

[39]). Furthermore, by assimilating a series of temperature observa-

tions, the PBS exploits the influence of soil moisture in propagating

a thermal wave from the surface into the soil [26]. This is a stronger

relationship than that between instantaneous temperature and soil

moisture values.
The advantage of using the PBS algorithm is also shown in the

eduction of the bias, and the increased reliability. At depths above

2 cm, the reliability of the PBS is nearly twice as high as that in the

F.

Despite resampling, the PF reduces the range of particle values

very time there is an update as it proceeds sequentially through the

h period. The PBS, on the other hand, allows the range of particle

alues to grow over the 3 h window. Across all model time steps in the

hole study period, the range of the particle values is on average 17%

arger than that of the PF algorithm. Consequently, the observations

re more likely to fall within the range of values considered by the

BS.

.2.1. Impact of observation interval

Fig. 5 shows the influence of the observation interval on the PBS

lgorithm. The total number of the observations within the assumed

h window is varied from 2 (1.5 h interval) to 12 (15 min assimilation

nterval). If the observation interval is equal to or greater than 45 min,

he PBS yields little if any improvement over the PF with an observa-

ion interval of 45 min (shown in black dashed line for reference).

owever, unlike the PF algorithm (Fig. 4), the median RMSE consis-

ently increases with increased assimilation interval. This is particu-

arly noticeable between 2 and 8 cm. Therefore, the best results are

btained when all available observations are assimilated. This may
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Fig. 3. Soil temperature and moisture estimates at 4 and 8 cm on 2nd April. The thin blue lines represent the ensemble members. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Comparison of RMSE of soil moisture estimated using the PF with different data observation intervals. The PF was tested using different initialized model inputs, and 20

runs were used for each observation interval. The black dashed line represents the RMSE of the open loop. In the box plot, the middle black line denotes the median value, the edges

of the box are the interquartile range (IQR), the maximum length of the whiskers is set to be the 1.5 times of the IQR, and values larger/smaller than the maximum/minimum the

whiskers are considered as outliers (black dots). The legends are the same for the following boxplots.
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mension of the distributions to be estimated increases with window
rove particularly useful in the context of DTS as observations can be

ade every minute or less.

.2.2. Impact of window length

The impact of window length in the PBS algorithm is explored

n Fig. 6, where an observation interval of 15 min, and 100 parti-

les are used. From 2 to 32 cm, increasing the window length from

to 3 h results in a reduction in the median RMSE. The improve-

ent is greatest at the assimilation depths of 4 and 8 cm. This con-

rms that assimilating a series of temperature observations may
ontain more soil moisture information than sequentially assimila-

ion of instantaneous observations. However, increasing the window

ength further to 6 or 12 h leads to an increase in both median RMSE

nd the IQR. There are two contributors to this degradation in per-

ormance. First, when precipitation occurs within a window, the es-

imated soil moisture prior to the precipitation event may be drawn

o a moister condition by the subsequent observations. This was ob-

erved when brightness temperature was assimilated to estimate soil

oisture using an ensemble batch smoother [39]. Second, the di-
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Fig. 5. Impacts of soil temperature observation interval on the PBS algorithm. The PBS algorithm uses a 3 hour window length with 100 particles. The black dashed line represents

the averaged RMSE of the estimates from the PF using an observation interval of 45 min. Similar to Fig 4, 20 tests with different model initialization are used.

Table 2

Comparison of soil moisture RMSE (m3m−3), bias (m3 m−3) and reliability es-

timated using the PF and PBS at five layers. The values presented are the aver-

aged RMSE from 20 tests. The observation intervals being considered are 15 min

(PBS-15 min) and 45 min (PF-45min and PBS-45min). The window length for

the PBS is 3 h.

Metric Algorithm Depths

2 cm 4 cm 8 cm 32 cm 64 cm

RMSE PF-45min 0.037 0.039 0.045 0.062 0.094

PBS-45min 0.035 0.037 0.042 0.059 0.094

PBS-15min 0.029 0.029 0.030 0.039 0.074

Bias PF-45min 0.029 0.035 0.042 0.059 0.098

PBS-45min 0.027 0.032 0.036 0.052 0.090

PBS-15min 0.019 0.020 0.023 0.033 0.081

Reliability PF-45min 0.087 0.031 0.021 0.002 0.000

PBS-45min 0.143 0.074 0.053 0.004 0.000

PBS-15min 0.346 0.314 0.155 0.004 0.000
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Fig. 6. Comparison of RMSE of soil moisture estimated using the PBS with different assim

model initialization is used. The observation interval is 15 min, with 100 particles.
ength, and additional particles may be needed to accurately capture

he posterior distribution.

.2.3. Comparison of the “optimal” PF and the PBS approaches

Based on the results in Figs. 5 and 6, the optimal assimilation strat-

gy for the PBS combines a 15 min observation interval with a win-

ow length of 3 h. Fig. 7 shows an example of soil moisture estimated

sing this optimal PBS and the optimal PF (45 min observation in-

erval). The initial particle settings are the same for both algorithms.

he soil moisture at all depths (Fig. 7) benefit from the significant im-

rovement in the correction from the assumed initial conditions. The

BS draws the estimate to the truth within the first day, while the PF

djusts it slightly before the particle range collapses inhibiting fur-

her improvement. At 32 and 64 cm, the PBS estimate continues to

rack the truth as the impact of improved soil moisture at 2 to 8 cm

s propagated downwards through the model physics; while the PF

stimate is drying out at 8 to 64 cm, the PBS increases at a similar rate
ilation window lengths at 5 depths. For each window length, 20 tests with different
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Fig. 7. An illustrative example of comparing the soil moisture estimates at 5 depths using the optimal PF (observation interval of 45 min), and the optimal PBS (observation interval

of 15 min and window length of 3 h). The blue and red solid lines represent the mean of the PF and the PBS estimates. The shaded areas are the particle ranges of the PF (blue) and

the PBS (red). The initial conditions for the PBS and PF are the same, and identical to these used in Fig 2.(For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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o the true observed soil moisture. At 2 and 4 cm, the PBS also draws

he moisture estimates closer towards observations after precipita-

ion (e.g. 30 March, 01, 03 and 07 April). The Q–Q plot in Fig. 8 com-

ares the PF and the PBS from a probabilistic point of view. In general,

he PF estimates are biased compared to the observed soil moisture,

ince the predicted quantiles are consistently lower than the uniform

istribution. As discussed above, this is caused by the errors in the

nitial condition, and the uncertainties in the parameters. Compared

ith the PF, the PBS reduces the bias of the estimates, which is most

ignificant at depth of 32 cm. Both the PF and the PBS are overcon-

dent in the estimates, i.e. the particle ranges are too narrow to en-

ompass the observations. This is partly because soil moisture was

ot directly assimilated, and partly because the observation accu-

acy of soil temperature is very small, which leads to particle weight

egeneracy.

Results in Figs. 7 and 8 are illustrative and based on one assumed

nitial condition. Table 2 shows the averaged RMSE from 20 tests, each

ith a different assumed initial condition. It is clear that the optimal

BS (PBS-15min) yields a significant reduction in RMSE compared to

he optimal PF (PF-45min). Similar to the results in Fig. 7, the great-

st improvements are at 32 and 64 cm where the RMSE is reduced

y 0.023 and 0.020 m3m−3 respectively. The bias in the PBS-15min is

ignificantly smaller than that of PF-45min estimated soil moisture.

his may indicate that the PBS algorithm is more suitable for cor-

ecting the errors in the initial conditions. The reliability of the PBS-

5min is approximately 4 to 7 times higher than that of PF-45min at

epths above 8 cm. At 32 and 64 cm, the differences in reliability are

nsignificant. This indicates that both algorithm are overconfident in
he estimates, which is consistent with Fig. 8. The PBS may be further

mproved by including a MCMC algorithm, e.g. [ 20, 22], or by mod-

fying the likelihood function to a distribution with heavy tails [40].

oth techniques may help to identify the location with larger poste-

ior probability, and reduce the overconfidence of the estimates.

.3. Computational burden of the PBS and the PF

Here, we quantify the potential increase in computational burden

ssociated with using a smoothing approach (PBS) rather than a filter

PF). There are two factors to consider. The first is that the posterior

istribution has a larger dimension in the PBS as so additional par-

icles may be required to capture it. Fig. 9(a)–(e) show the impact of

he number of particles on the RMSE in soil moisture at each depth.

or any given number of the particles, the PBS outperforms the PF

t each depth. For both algorithms, the median and the range of the

MSE is generally lower for a larger number of particles. The greatest

eduction in RMSE is observed between 2 and 8 cm as the number

f particles is increased up to 100. Any further increase leads to a

arginal, if any, reduction in median RMSE for both algorithms.

The second is the additional cost of performing the sequential im-

ortance sampling calculations for the larger state vector. Further-

ore, the states at previous times are stored in memory which adds

nput/output costs. Fig. 9(f) shows that the difference in clock time

equired by the PBS and PF is negligible (<3%). The dominant con-

rol is the number of particles, so the computational burden is deter-

ined by the Hydrus-1D simulations rather than the PF or PBS update

teps.
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Fig. 8. The QQ plot for the PF and the PBS estimated soil moisture at five depths. The estimates are from the results presented in Fig 7.

Fig. 9. Comparison of RMSE of soil moisture estimated using the PBS and the PF with different numbers of particles at 5 depths (a–e), and the computation time for different

number of particles (f). A window length of 3 h and 15 min observation interval is used for the PBS. The observation interval for the PF is 45 min. For each window length, 20

different initialized model inputs were used for testing.
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. Conclusion

In this study, we investigated the potential to use particle ap-

roaches to estimate soil moisture from temperature observations.

wo particle-based approaches (i.e. the particle filter, PF and the

article batch smoother, PBS) were tested by assimilating tempera-

ure observations and validating the estimated soil moisture profile

gainst soil moisture observed using conventional Hydra probes. The

BS uses the evolution of soil temperature within a window, instead

f instantaneous measurements. Therefore, the PBS may be more

uitable for capturing the temperature heating/cooling rate, hence

ore suitable for soil moisture estimation. We considered sources

f uncertainty comparable to those which would be encountered in

DTS application, i.e. uncertain meteorological forcing, soil texture

arameters etc.

Results demonstrate that assimilation using a particle filter yields

significant improvement over an open loop (no assimilation) run.

he best estimates were obtained between the surface and the depth

f the deepest temperature observation. Estimates at greater depth

ere particularly sensitive to the prescribed initial condition as the

ange of particle values collapsed soon after the first updates pre-

enting any additional update. The particle filter updates the states

y updating the weights of the particles, giving those that agree with

he observations a larger weight. It can only adjust within the range of

redicted values, so it is essential that this range includes the obser-

ation. Results indicate that the PF performs best when observations

re assimilated at an interval that allows this predicted range to grow.

urther research will investigate whether including MCMC and/or al-

ernative proposal distributions could alleviate this problem.

In addition, we implemented a particle batch smoother algorithm,

n which a series of temperature observations within a window are

ssimilated to update the trajectory of soil moisture in that win-

ow. Results demonstrated that this smoothing approach yielded a

tatistically significant reduction in RMSE compared to the particle

lter. Furthermore, this improvement was achieved with a negligi-

le increase in computational cost. The PBS uses a trajectory of tem-

erature observations within a window, which contains more mois-

ure information than one instantaneous observation. This results

n a reduction of RMSE up to 0.023 m3 m−3, compared to the PF

lgorithm. The PBS updates the prior moisture estimates once per

indow, which allows us to use all available observations without

article degeneration. As the PBS performs assimilation on the entire

indow at once, the dimension of the joint distribution of the states

s larger than in the PF. For soil moisture estimates, a window length

f 3 h with observation frequency of 15 min was shown to yield the

est results. For both the PF and PBS, the number of particles was

ound to be about 100. Increasing the number any further resulted

n only a marginal improvement in RMSE, while the computational

urden increased linearly with the number of particles.

The approaches studied here were developed to use distributed

emperature sensing to estimate soil moisture. Applying the parti-

le approaches with DTS would allow us to estimate soil moisture

very 25 cm to 1 m along fiber-optic cables that can be several kilo-

eters in length. Though these first results are already promising,

ngoing research will consider the additional benefit of performing

ual state-parameter estimation, e.g. [16,41]. Improving the soil pa-

ameters, particularly the soil thermal properties, would improve the

erformance of the model itself and potentially provide a means to

onitor soil heat flux using DTS.
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ppendix A. Recursive form of Bayes law and sequential

mportance sampling

According to the Bayes law, the unnormalized posterior density of

he model states within a window length of L is expressed as:

p
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hich gives:
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here the likelihood is factorized as [33]
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Therefore, the normalized posterior density is calculated as
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here p(yt−L+1:t |y1:t−L) is a normalize constant [22]. As a result,

q. (A.4) can be simplified as
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In the sequential importance sampling algorithm, the particles

ere sampled from a known distribution (proposal distribution,

(x1: t|y1: t)) and assigned the weights according to

i,∗
t =

p
(
xi

1:t

∣∣y1:t

)
q
(
xi

1:t

∣∣y1:t

) (A.6)

ubstituting p(xi
1:t

|y1:t ) with Eq. (A.5), it gives

i,∗
t ∝

p
(
xi

1:t−L

∣∣y1:t−L

)
p
(
xi

t−L+1:t

∣∣xi
1:t−L

)
p
(
yt−L+1:t

∣∣xi
t−L+1:t

)
q
(
xi

1:t

∣∣y1:t

) (A.7)

imilar with the PF algorithm [23], a proposal distribution of the fol-

owing form is used:(
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ombining Eqs. (A.7) and (A.8), the weights can be arranged as:
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imilar to the PF, this study uses the distribution of p(xi
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)
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, y1:t−L). Consequently, Eq. (A.9) is reduced to
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The normalized weight is given by

wi
t = wi∗

t∑N
i=1 wi∗

t

(A.11)

For the PBS algorithm, the calculated weight is applied for the en-

tire window, i.e. wi
t−L+1:t

= wi
t .
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