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Abstract—In this study, a novel methodology based upon the
information-theoretic measures of entropy and mutual informa-
tion was implemented to downscale soil moisture (SM) observa-
tions from 10 km to 1 km. It included a transformation function
that related auxiliary remotely sensed (RS) products at high res-
olution to in situ SM observations to obtain first estimates of SM
at 1 km and merging this estimate with SM at coarse resolutions
through Principle of Relevant Information (PRI). The PRI-based
estimates were evaluated using synthetic observations in NC
Florida for heterogeneous agricultural land covers (LC), with two
growing seasons of sweet corn and one of cotton, annually. The
cumulative density function showed an overall error in SM of
< 0.03 cubic meter/cubic meter in the region, with a confidence
interval of 95% during the simulation period. The PRI estimates
at 1 km were also compared with those from the method based
upon Universal Triangle (UT). The spatially averaged root mean
square error (RMSE) aggregated over the vegetative LC were
0.01 cubic meter/cubic meter and 0.15 cubic meter/cubic me-
ter using the PRI and UT methods, respectively. The RMSE
for downscaled estimates using the UT method increased to
0.28 cubic meter/cubic meter when Laplacian errors are used,
while the corresponding RMSE for the PRI remains the same
for both Laplacian or Gaussian errors. The Kullback–Liebler
divergence (KLD) for estimates using PRI is about 50% lower
than those using the method based upon UT indicating that the
probability density function (PDF) of the PRI estimate is closer to
PDF of the true SM, than the UT method.

Index Terms—Downscaling, entropy, microwave brightness
(MB) temperature, mutual information, Observation System Sim-
ulation Experiment (OSSE), Soil Moisture Active Passive (SMAP),
Soil Moisture and Ocean Salinity (SMOS).
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I. INTRODUCTION

HYDROMETEOROLOGICAL models simulate atmo-
spheric and hydrological processes at scales of 1–10 km

that are significantly influenced by local and regional dis-
tribution of soil moisture (SM) [1]. Microwave observations
at frequencies < 10 GHz are highly sensitive to changes in
near-surface moisture and have been widely used to retrieve
SM information [2]–[11]. While satellite-based SM products
from microwave observations are available at spatial resolutions
of a few meters, with temporal resolutions of several weeks,
passive observations are obtained at coarser resolutions of tens
of kilometers but with finer temporal resolutions of subdaily to
2–3 days. The recently launched European Space Agency-Soil
Moisture and Ocean Salinity (SMOS) [12] and the near-future
National Aeronautics and Space Administration (NASA)-Soil
Moisture Active Passive (SMAP) [13] missions have provided
SM at unprecedented spatial resolutions of 10–25 km. For
these observations to be relevant to hydrometeorological and
agricultural studies, the SM values need to be downscaled to
several kilometers. This downscaling of SM is also essential to
understand the effects of land surface heterogeneity on aggre-
gated microwave signature and to quantify SM under dynamic
vegetation conditions.

Typically, SM retrieved from satellite products at coarser
scales is spatially downscaled under the assumption that it
follows a known hierarchical model, such as power-law [14]
or fractal law models [15], [16] that are based upon temporal
persistence of SM across scales [1]. Distributed hydrology
models have been also used to investigate scaling characteristics
of SM at different spatial resolutions [17], [18]. Most of these
approaches assume static vegetation conditions and/or spatial
homogeneity. Studies involving heterogeneous and dynamic
land-cover (LC) conditions are necessary to evaluate the accu-
racy of downscaling algorithms for realistic applications.

Some studies use other remote sensing (RS) products, such
as leaf area index (LAI), land surface temperatures (LSTs), [19]
and LC [20] observed at a finer resolution in conjunction with
microwave observations at a coarser resolution to retrieve SM
at 1 km. In these methods, the high-resolution RS products are
either used in land surface models (LSMs) to directly estimate
SM or are upscaled to match the resolution of microwave obser-
vations [15], [19], [21]. The LSMs require in situ or other data
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for calibration and validation. In situ data are sparsely available
at regional scales and in remote regions. Empirical models
based upon statistical methods such as regression [4], [22], [23],
multiscale tree [24], and geostatistical methods, such as cok-
riging and block kriging, have been used to extract SM infor-
mation from diverse RS products. Another class of techniques
employs the triangle method [25], [26] using statistical models
to extrapolate the dependent data within a hypothetical triangle/
trapezoid formed by the observed data, [27]–[30]. Kim and
Hogue [30] used the triangle method with a derived soil wetness
index at a scale of 1 km as a scaling factor and found that
the accuracy of downscaled SM was a strong function of the
spatial correlation of LST and soil evaporative efficiency to SM.
Merlin et al. [27] proposed the DISPATCH algorithm that cal-
culated soil evaporative efficiency [31] as a function of normal-
ized difference vegetation index (NDVI) and LST and used the
triangular relationship between the efficiency and SM at the two
scales to obtain high-resolution SM estimates. This method was
validated using data from the Murrumbidgee River catchment
area in Southern Australia during the National Airborne Field
Experiment ’06 [32]. An improved version of the DISPATCH
algorithm [28] used a linear or nonlinear (depending on the ap-
plication scale) evaporative efficiency relationship and a correc-
tion for topographic effects. Piles et al. [29] developed a linking
model from the triangle formed by the observed data at coarse
scale and applied the model to data at finer scale, assuming
equivalence at both scales. This was validated using data from
three days during a four-week period in January and February
2010 from an experiment in the MurremBridge River catchment
area. Lack of NDVI observations from the Moderate Resolution
Imaging Spectroradiometer (MODIS) limited their validation
study to just three days. Although the annual precipitation
(PPT) and LCs in the area were heterogeneous, the validation
limited the diversity. The robustness of these methods over dif-
ferent vegetation and PPT conditions remains largely unknown.

All the aforementioned methods, as outlined in [33], use
second-order statistics as their optimization tool. Scaling algo-
rithms based upon second-order statistics can potentially lead
to significant loss of structural information in the data [34],
particularly under highly nonlinear heterogeneous and dynamic
conditions. The Bayesian hierarchical framework [35] utilizes
information from the probability density functions (PDFs) but
is computationally intensive and still relies heavily on Gaussian
assumptions. Computationally efficient nonparametric algo-
rithms based upon data descriptors that retain information from
higher order moments allow for optimal downscaling, partic-
ularly under heterogeneous and dynamic land surface condi-
tions. Information-theoretic learning is a framework where the
conventional concepts of second-order statistics are substituted
by scalars and functions based upon information theory, such as
entropy and mutual information [36], [37]. The PRI [38], which
is based upon the measures of entropy and mutual information,
provides a hierarchical decomposition of spatial data that is op-
timal in terms of the transfer of information across spatial scales
and may be a better alternative to methods that use second-
order statistics. Statistical data descriptors beyond the second-
order moment are necessary to capture the complete stochastic
structure of data and to preserve maximum information to

Fig. 1. Study region in North Central Florida. LSP-DSSAT-MB simulations
were performed over the shaded 50× 50 km2 region.

achieve optimal downscaling, particularly over heterogeneous
and dynamic environments.

The goal of this paper is to implement and evaluate a PRI-
based methodology to downscale observations of SM from 10
to 1 km using the observations of LST, LAI, LC, and PPT
at 1 km. The coarse resolution is representative of the SM
products from the SMAP mission. The downscale methodology
presented in this paper can be extended for the SMOS-SM
product at 25 km. The primary objectives of this paper are to:
1) downscale observations of SM obtained at 10 km to 1 km
using the PRI; and 2) evaluate the PRI-based methodology and
compare it with a most recently used method for downscaling
for the SMOS-SM product [29].

In the next section, we describe the framework to generate
the synthetic data set and the coupled Soil Vegetation Atmo-
spheric Transfer (SVAT)-vegetation-passive microwave model
used in this paper.

II. SIMULATION FRAMEWORK FOR SCALING STUDIES

A simulation framework, similar to [14] was developed
to conduct synthetic experiments for heterogeneous agricul-
tural landscapes with dynamic vegetation and to evaluate the
proposed downscaling methodology [39]. A 50× 50 km2 re-
gion, equivalent to 25 SMAP pixels, was chosen in North
Central Florida (see Fig. 1) for the simulations. The region
encompassed the University of Florida/Institute of Food and
Agricultural Sciences (UF/IFAS) Plant Science Research and
Education Unit, Citra, FL, where a series of season-long field
experiments, called the Microwave, Water and Energy Balance
Experiments (MicroWEXs), have been conducted for various
agricultural LCs over the last decade [40]–[42] used in this
paper. A spatial resolution of 200 m was chosen for the model
simulations, corresponding to the agricultural field site used
during the MicroWEXs. Simulated observations of LST, LAI,
and TB were generated at 200 m for a period of one year,
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Fig. 2. (a) LC at 200m during cotton and corn seasons. White, gray, and black shades represent bare soil, cotton, and sweet-corn regions, respectively.
Homogeneous crop fields along with centers for (b) sweet corn and (c) cotton.

from January 1, 2007 through December 31, 2007. Topographic
features, such as slope, were not considered in this paper
because the region is typically characterized by flat and smooth
terrains with no runoff due to soils with high sand content. The
soil properties were assumed constant over the study region.
The assumption was based upon sand content estimated in the
root zone using soil maps obtained from the U.S. Department of
Agriculture. From the soil maps, 95% of the region comprised
of soils with over 70% sand by volume in the root zone.

The simulation framework consisted of four components,
i.e., a component for simulating meteorological forcings and
LC to represent a heterogeneous landscape with dynamic veg-
etation conditions at 200 m; a coupled SVAT-crop growth
model component for simulating SM, soil temperature, and
crop growth and development; a forward microwave brightness
(MB) model component for simulating L-band brightness tem-
perature; and an upscaling component for generating synthetic
TB , SM, LST, PPT, and LAI observations at 10, and 1 km.

A. Meteorological Forcings and LC at 200 m

The 15-min observations of PPT, relative humidity, air tem-
perature, downwelling solar radiation, and wind speed were ob-
tained from eight Florida Automated Weather Network stations
[43] located within the study region (see Fig. 1). The observa-
tions were spatially interpolated using splines to generate the
meteorological forcings at 200 m. Long-wave solar radiation
were estimated following Brutsaert [44].

In the 50× 50 km2 region, three primary agricultural LCs,
sweet corn, cotton, and bare soil (see Fig. 2) were considered.
A highly dynamic landscape was considered, with two seasons
of sweet corn per year, the first season starting in March and the
second in July at the same location; and one season of cotton
planted in June. The sweet-corn season lasts about 78 days,
whereas the cotton season is 179 days long, as shown in Table I.
Irrigation and crop management schedules were based upon
typical management practices from the MicroWEXs and from
the farm managers at the PSREU. Bare soil conditions were
assumed during the nongrowing season at these locations.

B. Coupled SVAT-Crop Growth Model

The SVAT model used in this paper is the Land Surface Pro-
cess (LSP) model [45]. The model is forced with micrometeo-

TABLE I
PLANTING AND HARVEST DATES FOR SWEET CORN

AND COTTON DURING THE 2007 GROWING SEASON

rological parameters, such as air temperature, relative humidity,
downwelling solar and longwave radiation, irrigation/PPT, and
windspeed. The model has been rigorously tested [46] and ex-
tended to wheat-stubble [47] and brome-grass [45] in the Great
Plains, prairie wetlands in Florida [48], to tundra in the Arctic
[49], and to growing crops [50]. The LSP model was coupled to
a vegetation growth model, viz., the decision support system for
agrotechnology transfer (DSSAT) to provide estimates of water
and radiation fluxes during dynamic vegetation conditions [50].
The DSSAT simulates crop growth and development at a daily
step using modules for soil, soil–plant–atmosphere, weather,
management, including irrigation and fertilization [51], [52].
The model has been extensively tested in different hydro-
climatic regions [52]–[61]. The model was also tested and
calibrated for its applicability to North-Central Florida [62]
before it was coupled with the LSP model. In the coupled LSP-
DSSAT model, the LSP model provides DSSAT with estimates
of SM and temperature profiles and evapotranspiration. The
DSSAT model provides LSP with vegetation characteristics
that influence heat, moisture, and radiation transfer at the land
surface and in the vadose zone [50].

C. MB Model for TB Estimation

TB measurements used by [29], were generated using the
widely used τ − ω model [63]. A vegetated surface is modeled
as a single isothermal layer of vegetation with diffuse bound-
aries [64]. The soil medium is assumed to be a nonisothermal
semi-infinite layered dielectric medium with a rough surface
at the upper boundary. The SM and temperature profiles, the
leaf/ear biomass, vegetation water content, and plant height
provided by the LSP-DSSAT model were used by the MB
model to estimate brightness temperature at L-band. Using a
zeroth-order radiative transfer approach, the total brightness
temperature of a terrain (TB) is the sum of contributions
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from soil (TBsoil,p), vegetation (TBcanopy,p), and from
sky (TBsky,p)

TBsoil,p =(1− rp)Teff exp(−τ/μ)

TBcanopy,p =Tc [1−exp(−τ/μ)] (1− ω) [1+rp exp(−τ/μ)]

TBsky,p =Tskyrp exp(−2τ/μ) (1)

where p is the polarization, rp is the reflectivity of the rough soil
surface, Teff is the effective radiating temperature of the soil,
μ = cosθ, where θ is the incidence angle, Tc is the physical
temperature of the isothermal canopy, ω is the single-scattering
albedo, τ is the optical depth, and Tsky is the downwelling sky
brightness.

In this paper, the θ was set to 50◦, the Tsky was set to 5 K
[63], rp was obtained by integrating the bistatic scattering coef-
ficients from the Integral Equation Model (IEM) model [65],
the RMS height was 0.62 cm and, the correlation length
was 8.72 cm [41], [66]. The soil dielectric properties were
obtained from the four-component model described in [67].
The optical depth was calculated from the linear relationship
τ = b ∗ VWC [68], where b is a regression coefficient that was
set to 0.2 for both sweet corn and cotton, following [2].

D. Synthetic Observations at Resolutions of 1 and 10 km

The model simulations were performed over each agricul-
tural field rather than all the pixels to reduce computation time.
Based upon LC information at 200 m, contiguous homogeneous
regions of sweet corn and cotton were identified, as shown
in Fig. 2. A realization of the LSP-DSSAT-MB model was
used to simulate TB , LST, LAI, and PPT at the centroid
of each homogeneous region, using the corresponding crop
module within DSSAT. The model simulations were performed
using the 200-m forcings at the centroid, as shown in Fig. 2.
Linear averaging is typically sufficient to illustrate the effects
of resolution degradation [69]. The model simulations at 200 m
were spatially averaged to obtain PPT, LST, LAI, SM, and TB

at 1 and 10 km. The SM obtained at 1 km was used as truth
to evaluate the downscaling methodology. To simulate rain-fed
systems, all the water input from both PPT and irrigation were
combined together, and the “PPT” in this paper represents these
combined values.

III. DOWNSCALING FRAMEWORK

The problem of downscaling SM, i.e., creating a more de-
tailed representation of SM at 1 km from coarser observations
at 10 km, is limited by physical constraints dictated by the
convolution of the point spread function of the imaging system.
It is therefore an ill-defined problem that should be augmented
or regularized with additional information relevant to SM at
1 km. This is provided by a nonparametric Bayesian first es-
timate of the data, i.e., an estimate obtained by a transformation
function. Such a probabilistic approach is also robust against
data gaps, as it can provide estimates without a priori PPT, LC,
LAI, or SM information for a few days within the experimental
period. This is particularly helpful because satellite products,

Fig. 3. Flow diagrams of the downscaling steps using the (a) PRI and (b) UT
methods.

such as LST and LAI, are affected by cloud cover resulting in
sparse data sets. Here, we describe the downscaling framework
based on PRI and briefly discuss the implementation of the UT
method. Fig. 3(a) compares the two frameworks.

A. PRI-Based Framework

The downscaling methodology using PRI is implemented in
two steps, as shown in Fig. 3(a). In the first step, an initial esti-
mate of SM is obtained at 1 km using transformation functions
that relate LST, LAI, PPT, and LC to SM at the same spatial
resolution of 1 km. In the second step, this initial estimate is
merged with the SM observations at the coarser resolutions of
10 km using PRI to obtain improved estimates of SM at 1 km.

1) Step 1—Transformation of LST, LAI, PPT, and LC at 1 km
for Initial Estimates of SM at 1 km: The main objective of the
transformation process is to obtain a probabilistic relationship
between SM at 1 km using information from LST, LAI, PPT,
and LC obtained at the same scale. As mentioned earlier, the
PPT values included water input from both PPT and irrigation
to simulate rain-fed systems. A discrete formulation of the
Bayes rule is used to estimate SM, as given in (2), wherein
SM is discretized into k classes, i ∈ [1, k], LST into k1 classes
LSTi1 , i1 ∈ [1, k1], LAI into k2 classes LAIi2 , i2 ∈ [1, k2],
PPT into k3 classes LCi3 , i3 ∈ [1, k3] and LC into k4 classes
LCi4 , i4 ∈ [1, k4]

p (SMi|LSTi1 ,LAIi2 ,PPTi3 ,LCi4)

=
p(LSTi1 ,LAIi2 ,PPTi3 ,LCi4 |SMi)p(SMi)

p (LSTi1 ,LAIi2 ,PPTi3 ,LCi4)
SMi

= argmax
SMi

p(LSTi1 ,LAIi2 ,PPTi3 ,LCi4 |SMi)p(SMi)

p (LSTi1 ,LAIi2 ,PPTi3 ,LCi4)
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p (LSTi1 ,LAIi2 ,PPTi3 ,LCi4)

=

k∑
i=1

p (LSTi1 ,LAIi2 ,PPTi3 ,LCi4 |SMi) p(SMi). (2)

A nonparametric PDF estimation technique, known as
Parzen windows, [70] was used to estimate the PDF, p(LSTi1 ,
LAIi2 ,PPTi3 ,LCi4 |SMi), in (2). In this technique, symmetric
functions, known as kernels, are used to estimate the PDF of
a random variable based on a finite set of data samples. The
kernels assign weights to each of the samples based on their
distance from the point at which the PDF is estimated, with
higher weights being assigned to the samples that are closer to
the point. In this paper, a zero-mean unity-variance Gaussian
function was used as the kernel. With Gaussian kernels, the
weight decreases exponentially with the square of the distance,
rendering the distant points irrelevant.

Given n training samples LSTj , LAIj , LCj , PPTj(j∈ [1, n]),
the probability of LST, LAI, LC and PPT belonging to classes
LSTi1 , LAIi2 , PPTi3 and LCi4 , respectively, for a known SMi

is represented as p(LSTi1 ,LAIi2 ,PPTi3 ,LCi4 |SMi) and com-
puted using (3). The PDF is estimated at all combinations of
LST, LAI, PPT, and LC classes resulting in a PDF of dimension
k1 × k2 × k3 × k4

p (LSTi1 ,LAIi2 ,PPTi3 ,LCi4 |SMi)

=
1

n

n∑
j=1

1

h1h2h3h4
ψ

(
LSTi1 − LSTj

h1

)

× ψ

(
LAIi2 − LAIj

h2

)
ψ

(
PPTi3 − PPTj

h3

)

× ψ

(
LCi4 − LCj

h1

)
(3)

where ψ is the Gaussian kernel and hi, i ∈ [1, 2, 3, 4], is a
smoothing parameter, which relates to the variance in ψ for
LST, LAI, PPT and LC, respectively. The parameter hi was
determined based on Silverman’s rule, which is a standard rule-
of-thumb that is used in kernel-based estimation algorithms
[71], as given in (4). The PDF p(SMi) in (2) is a 1-D PDF that
was computed at k points

hi = 1.06min

[
σi,

IQRi

1.34

]
n−1/5 (4)

where σi and IQRi
, i ∈ [1, 2, 3, 4] are the standard deviation

(SD) and interquartile range, respectively, computed from the
n samples for LST, LAI, PPT and LC.

Computing the aforementioned PDFs from the n training
samples can be viewed as a learning step. Given LST, LAI,
PPT, and LC information at 1 km, the most probable SM value
can be inferred using (2) to produce the initial estimates of SM
at 1 km.

2) Step 2—Downscaling SM Using PRI: The PRI provides
a hierarchical decomposition of spatial data that is optimal in
terms of the transfer of information across scales, by min-
imizing or maximizing a balance between entropy and the
Kullback–Leibler divergence (KLD) of the original data with

respect to its upscaled or downscaled versions [70]. While
entropy is a redundancy reduction term, the KLD is an infor-
mation preserving term. If entropy is maximum, while KLD is
0, the observations remain the same, whereas if KLD is high
with zero entropy, the data set is represented by a single point,
the mean. Depending on the proportion of the two metrics,
one can find a range of structures, which can be cast as an
information extraction process. The optimization equation for
PRI is

max
X

J(X) = H(X) + βKL(pX‖pS) (5)

where J(X) is the cost function, pS is the PDF of the original
data, and pX is the PDF at each iteration. H(X) is the entropy,
and KL is the KL divergence. The β is a user-defined weight-
ing parameter that balances the redundancy and information
preservation in J(X). As the value of β increases, the cost
function gives more and more emphasis to KL, thus preserving
more information about the data at the cost of extremely high
redundancy reduction. Equation (5) may be rewritten in a
different form by using Renyi’s quadratic entropy (H2(X)) and
cross-entropy (H2(X,S)), respectively, [72], to obtain a more
practical cost function J(X), namely,

max
X

J(X) = (1− β)H2(X) + 2βH2(X,S). (6)

An iterative solution xk, k = [1, 2, . . . , N ] can be obtained by
taking the derivation of J(X) with respect to x and equating it
to zero. The resulting fixed-point rule is given in (7)

xk(t+ 1) = c
1− β

β

∑N
j=1 ψ (xk(t)− xj(t))xj(t)∑M

j=1 ψ (xk(t)− sj)

+

∑M
j=1 ψ (xk(t)− sj) sj∑M
j=1 ψ (xk(t)− sj)

(7)

where

c =
V (X,S)M

V (X)N

V (X) is the information potential [73] of data points in X ,
V (X,S) is the cross-information potential between data points
in X and S, N , and M are the number of data points in X and
S, respectively, t represents the iteration, and ψ is the Gaussian
kernel as explained in Section III-A.

To illustrate the functionality of the PRI, a simple example
created by a set of Gaussian clusters placed in a circle is shown
in Fig. 4(a). Variable X in (6) is initialized to the simulated
Gaussian cluster data set (S). Applying the PRI for different
values of β reveals various structures relevant to the data set. At
one extreme, we have a single point, and at the other extreme,
we have the data itself as the solution. As we move from
one end to another, the PRI displays the modes and principal
curves revealing different hierarchical levels of structure from
the data.

The implementation of PRI was slightly modified for down-
scaling SM. Instead of initializing X to S, the initial estimates
of SM at 1 km obtained from Section III-A were used as X
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Fig. 4. (a) Conventional implementation of PRI where X is initialized to a
sample data set S, producing different nonlinear tranformations in X based on
β, (b) implementation of PRI for downscaling by morphing X and S, where X
and S are initialized to the observations obtained from the transformation step
at 1 km and the coarse-resolution satellite observation at 10 km.

in (6). SM at 10 km were used as S. Under the assumption
that X and S represent the same imagery using different mea-
surements, the cross-entropy term H2(X,S) should be largest
when they coincide. This condition is obtained when β = 1
in (6). However, this case provides the best downscaled X
supported by S, in spite of the fact that S represents only an
approximate and coarse-level information on SM. In this paper,
an intermediate value of β = 2 was chosen so that the PRI
image would approximate the mean level of SM at coarse scales
but will also embed the level of detail provided by the initial
estimates of SM at 1 km, to obtain morphed estimates of SM
at 1 km.

B. Downscaling Framework Based on UT Method

In this paper, we compare the PRI-based method with that
based upon the UT. The UT method as used in [29] relates
NDVI and LST from MODIS, and SMOS TB at coarse reso-
lution to SMOS-SM at coarse resolution. The topology for this
method is shown in Fig. 3(b). This is achieved in two steps.
First, a regression relationship is formulated at coarse resolu-
tion as

sm =

n∑
i=0

n∑
j=0

n∑
k=0

aijk(NDVI)i(LST)jT k
B . (8)

Parameter n is the order of the model and is typically chosen
as two for computational efficiency. NDVI, TB , and LST are
normalized with respect to the range of observations, with
values between 0 and 1. In the second step, (8) is applied with
regression coefficients aijk, along with NDVI, TB , and LST
at 1 km to obtain SM at 1 km, assuming that the relationship
obtained at coarser resolution still holds true.

IV. METHODOLOGY

1) PRI-Based Algorithm: The terrain conditions were sim-
ulated from Jan 1 (DoY 1) to December 31 (DoY 365), 2007.
This period consisted of two growing seasons of sweet corn
and one season of cotton, as shown in Table I. The LST, PPT,
and LAI observations at 1 km were obtained by adding noise
to account for satellite observation errors, instrument mea-

TABLE II
DAYS SELECTED FOR EVALUATING PRI ESTIMATES. THESE DAYS

CAPTURE VARIABILITY IN PPT/IRRIGATION AND LC

surement errors, and micrometeorological variability, following
[14], [74], [75]. Two error distributions, i.e., Gaussian and
Laplacian, were applied. The Gaussian distribution is typically
used for most studies, but most measurement noise cannot
be fully described with second-order statistics, and it may
not be realistic. The Laplacian noise is a much higher order
distribution and may be more realistic for highly nonlinear data
sets. Implementing two different noise models also allows for
testing the robustness of the downscaling methodology. In this
paper, the errors with zero mean and standard deviations of 5K,
1 mm, 0.03 m3/m3, and 0.25 for LST, PPT, SM, and LAI,
respectively, were added to the values at 10 km obtained in
Section II-D.

The PRI used LST, PPT, LAI, LC, and SM at 1 km every
three days as input to obtain the transformation function. A
nonparametric Bayesian classifier was trained with a subset
of the aforementioned data with training percentages of 10%,
33%, and 50%. Using the SM observations at 10 km and first
estimates of SM at 1 km from the transformation function,
downscaled SM estimates using PRI were obtained using (6).

The performance of the PRI method was evaluated using
PDFs and cumulative distribution functions (CDFs), as es-
timated by interpolating the discrete data set using kernel
functions. The CDF of the error in downscaling SM, i.e., the
absolute difference between the true SM and the downscaled
SM estimates, at 1 km aggregated over the simulation period,
is analyzed to understand the combined effects of bare and
vegetated terrains and of Gaussian and Laplacian noise distri-
butions on PRI performance. This analysis is also conducted
for downscaled SM estimates aggregated during the growing
seasons of sweet corn and cotton, to understand the effects
of vegetation only. The kernel density estimate (KDE) of the
true SM and downscaled SM at 1 km with Laplacian error is
evaluated for four periods during the simulation year, when the
LC in the region is bare, when the LC is a combination of bare
soil and sweet corn, when the LC is a combination of bare soil,
sweet corn, and cotton, and when the LC is a combination of
only bare soil and cotton. During those four periods, the KDE
is separately plotted for bare soil and vegetated pixels and for
the overall region.

In addition, five days were selected to understand the effects
of LC heterogeneity and PPT distribution on the SM estimates
at 1 km. Variabilities in PPT, ranging from uniformly wet to
uniformly dry, and in LC, ranging from bare soil to vegetated
with both cotton and sweetcorn, were used as criteria for
selecting the days, as shown in Table II. Quantitative analyses
of spatial variations in SM observed under dynamic vegetation
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and heterogeneous LC conditions provide an index of dynamic
errors that can be expected. The algorithm was evaluated over
the simulation period using both KLD and RMSE. For example,
a methodology that consistently overestimates SM may have a
low KLD value due to the error distribution being unimodal.
On the other hand, if the error is multimodal, analyzing a
second-order metric, such as RMSE without considering KLD
values, can lead to misinterpretation of algorithm behavior, as
the distribution of the errors cannot be known a priori. The
effect of uncertainty in the coarse-resolution observations was
investigated using a normally distributed error in SM at 25 km,
with standard deviations ranging from 0.02 to 0.16 m3/m3

H(e) = −
n∑

i=1

p(ei) log (p(ei)) (9)

KLD(SM) =

n∑
i=1

p
(
SMest

i

)
log

p
(
SMest

i

)
p
(
SMtruth

i

) . (10)

The PDF-based measure of KLD [(10)], computed between
the PDFs of simulated and estimated SM at 1 km, was used to
quantify the efficacy of the downscaling algorithm in preserving
the distribution of SM. The effect of the Gaussian and Laplacian
noise models are also compared using their KLD measures,
which can be also interpreted as the analog of the distance
metric between the downscaled and true observation KDE’s
in some probability space. Second-order error metrics such as
RMSE and SD were also included to quantify the errors in the
estimates.

Finally, scenarios were simulated where minimal in situ
observations were available for the transformation function
to quantify the performance of the downscaling algorithm in
data-sparse regions. The transformation function was generated
using only bare soil pixels, and applied to the heterogeneous
region, simulating a data poor condition.

2) Comparison of PRI and UT Methods: The UT method
uses maximum LST, LAI, TB , and SM at 1 and 10 km every
three days for downscaling. The 10-km observations were
obtained by adding noise with two distributions, similar to
Section IV-A1. For downscaling with the UT method, first, the
regression coefficients in (8) are calculated using normalized
versions of LAI, TB , LST, and SM at 10 km. These regression
coefficients are used in linear equations at the fine resolution of
1 km to obtain the downscaled SM.

The PRI estimates were compared with the UT estimates
using the CDF of the error and the KDE of downscaled ob-
servations, similar to Section IV-A1. The downscaled estimates
from the PRI were compared with those obtained from the UT
method were then compared with the PRI estimates for the
selected five days during the simulation period, representing
different micrometeorological and LC conditions.

V. RESULTS AND DISCUSSIONS

A. PRI-Based Downscaling Algorithm

The initial estimate of SM was calculated at 1 km using the
probabilistic relationship of PPT, LST, LAI, and LC with SM.
The first estimates of SM extracts the structure and hetero-

Fig. 5. Absolute averaged error in SM at 1 km over the simulation period as a
function of percent of data set used for training during the development of the
transformation function.

Fig. 6. CDF for SM errors between the true SM at 1 km and those obtained by
using PRI and UT methods, with Gaussian and Laplacian noise distributions.
The “vegetated” period includes sweet corn crop from DoY 61–139 and cotton
crop from DoY 153–332 seasons. Note that the cotton season also includes a
second sweet-corn season. The “overall” includes bare soil and vegetated LCs
during the simulation period.

Fig. 7. Comparison of KDE of true SM values at 1 km, downscaled SM
estimate using PRI and UT methods at 1 km during the days when the LC
in the region consisted of bare soil only, viz., DOY 1–61, 139–153, and
332–365.
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Fig. 8. Comparison of KDE of true SM values at 1 km, downscaled SM estimate using PRI and UT methods at 1 km for days when the LC consisted of sweet
corn, and bare soil, DOY 61–139 over (a) only bare soil pixels, (b) only corn pixels, and (c) all pixels.

Fig. 9. Comparison of KDE of true SM values at 1 km, downscaled SM estimate using PRI and UT methods at 1 km for days when the LC consisted of cotton
and bare soil, DOY 153–183 and 261–332 over (a) only bare soil pixels, (b) only cotton pixels, and (c) all pixels.

geneity in the spatial distribution of SM and has a regionally
averaged RMSE of 0.04 m3/m3 over the simulation period
compared with the true SM at 1 km. As shown in Fig. 5,

increasing the size of the training data set above 33% decreases
the errors by only 0.005 m3/m3 by volume. Thus, in this paper,
33% of the data set was used for training.
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Fig. 10. Comparison of KDE of true SM values at 1 km, downscaled SM estimate using PRI and UT methods at 1 km for days when the LC consisted of sweet
corn, cotton, and bare soil, DOY 183–261 over (a) only bare soil pixels, (b) only cotton pixels, (c) only corn pixels, and (d) all pixels.

The CDFs of the error for PRI estimates on days with
overall and vegetated LC are shown in Fig. 6. The overall error
CDF reaches the maximum when the errors in SM are about
0.05 m3/m3, indicating high probability of low error. The CDF
for the vegetated days is very similar to that for the overall pe-
riod, with a maximum difference of 0.003 m3/m3, which shows
that the PRI is reasonably robust to vegetation heterogeneity.
The error CDF for the PRI estimates is similar for both Gaus-
sian and Laplacian noise distributions demonstrating the robust-
ness of the PRI algorithm even for higher moment error models.
From the CDF curve, it is clear that the individual pixel errors
are less than 0.004 m3/m3 by volume, with 95% confidence.

Fig. 7 shows the KDE for the downscaled SM in bare soil
pixels during the nongrowing season using the PRI compared
with the KDE of the truth. The estimated densities of the
PRI matches the best with the true SM in this case, which is
expected as with a fully homogeneous LC the 4-D problem
becomes essentially a 3-D problem, with one sparse dimension.
Figs. 8–10 show the Kernel estimates of the PDF of downscaled
SM during the growing seasons when there is only cotton, only
corn, and both corn and cotton crops, respectively. A measured
theoretic interpretation of the error is the sum of the distances
between the true density and the projection of each of the input
densities, using the PRI as a mapping function, in a suitable
probability space. During bare soil, one of the marginals, the
LC, is always degenerate or constant valued and does not con-
tribute to the overall error. Thus, the errors will always be higher
for vegetated periods than for the bare soil case. The down-

scaled SM value in all the vegetated cases is the most accurate
when the SM < 0.1 m3/m3. The PRI KDE is also identical to
the truth KDE during flooded conditions, with SM > m3/m3.
For the five selected days, the inputs, the first SM estimate, and
PRI-downscaled SM are shown in Figs. 11–15. The RMSE, SD,
and KLD for these days are shown in Table III. Both DoY 39,
shown in Fig. 11 and DoY 354, shown in Fig. 13 are during
bare soil LC before and after the growing seasons, respectively.
The RMSEs for both days are very low, but due to crop residue
and slightly heterogeneous PPT in the region [see Fig. 13(e)],
the RMSE for DoY 354 is higher than DoY 39, as shown in
Table III. It was found that heterogeneity in any one input, is
enough to capture vegetation patterns in the PRI-downscaled
estimate, as shown in Figs. 13(a) and 14(a), for corn and cotton,
when the LST is fairly uniform across the region, whereas PPT
is heterogeneous due to PPT patterns. Due to equal weights
given to both coarse resolution and fine resolution, with β = 2
in (5), PRI tends to average or blur SM across crop boundaries,
for example on DoY 222, when there was maximum hetero-
geneity in LC with corn, cotton, and bare soil, as shown in
Fig. 15. This tendency can be altered by a different β, in a real-
world scenario. However, the benefit of assigning equal weights
is that the algorithm does not over- or underestimate SM by
more than 0.005 m3/m3 in key areas, to keep the vegetation
boundaries sharp. In the most heterogeneous case, on DoY 222
the KLD is the highest, signifying the most difference between
the PDF of the downscaled observation and truth. In the other
cases, KLD is much lower.
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Fig. 11. DoY 39—(a) LC at 1 km (blue represents baresoil), (b) LAI at 1 km, (c) PPT at 1 km, (d) LST at 1 km, (e) SM observations at 10 km, (f) TB at 10 km,
(g) true SM at 1 km, (h) PRI estimate with Gaussian error at 1 km, (i) PRI estimate with Laplacian error at 1 km, (j) transformation function estimate at 1 km,
(k) UT estimate with Gaussian error at 1 km, and (l) UT estimate with Laplacian error at 1 km.

Fig. 16 shows the RMSE in downscaled SM at 1 km when
normally distributed errors with increasing standard deviations
are added spatially to the 10-km observations. The RMSE stays
almost constant at 0.004 m3/m3 with an increase in SD until
the SD is lower than 0.06 m3/m3. The RMSE for the bare
pixels were slightly lower than those for the vegetated pixels,
within 0.05 m3/m3. This indicates a very low inherent error in
downscaling. As the SD increases from 0.06 to 0.16 m3/m3,
RMSE increases almost linearly with a slope of 0.16. When
this was repeated for different days, the curve was almost same
when SD of errors added more than the inherent downscaling
error. Table IV shows the impact of the amount of training
data on errors in downscaled SM for data-rich and data-poor

regions. As expected, the errors increase to 0.025m3/m3 by
volume from 0.00715m3/m3 when 33% of the data was used
for training for data poor regions. This value of error is within
the uncertainty of satellite observations.

B. Comparison of PRI and UT Methods

The error CDF in downscaled observations using PRI and the
UT methods are compared in Fig. 6. The CDF of errors with the
UT method using Laplacian error distribution is significantly
worse than the CDF with Gaussian errors. The CDF for the
bare soil with Laplacian errors is significantly different for UT
method because being second order, it cannot effectively deal
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Fig. 12. DoY 354—(a) LC at 1 km (blue represents baresoil), (b) LAI at 1 km, (c) PPT at 1 km, (d) LST at 1 km, (e) SM observations at 10 km, (f) TB at
10 km, (g) true SM at 1 km, (h) PRI estimate with Gaussian error at 1 km, (i) PRI estimate with Laplacian error at 1 km, (j) transformation function estimate
at 1 km, (k) UT estimate with Gaussian error at 1 km, and (l) UT estimate with Laplacian error at 1 km.

with higher order noise and due to convergence issues in some
bare soil pixels with the UT method, during the times when LAI
was 0 but the SM is heterogeneous due to antecedent PPT; thus,
there is some residual SM. Thus, the noise models affect the
UT Method, whereas their effect is minimal in the PRI-based
method. This indicates that a downscaling method that includes
higher order relationships may be more suitable for highly
dynamic and heterogeneous LCs such as agricultural fields.

Fig. 7 shows the KDE of downscaled SM for bare pixels
using the PRI and UT methods, both using Laplacian error
distribution, compared with the PDF of the truth. Even for the
straightforward case of only bare soil, the UT method consis-

tently underestimates SM due to convergence issues. For the
case of only corn crop, as shown in Fig. 9, or only cotton crop,
as shown in Fig. 8, UT method does not provide a reasonable
reconstruction of true KDE. This difference is expected because
the method since only conserves the first two moments. This
is corroborated in the case of most heterogeneous vegetation
landscape with both corn and cotton, as shown in Fig. 10, where
the differences between the KDE are maximum. During the
vegetated days, the UT method over-estimates SM implying
a higher probability of more errors, as evident from the error
KDE. The PRI estimates are much closer to the KDE of the
truth, in all the cases.



96 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 1, JANUARY 2015

Fig. 13. DoY 135—(a) LC at 1 km (blue represents baresoil and yellow represents sweet-corn), (b) LAI at 1 km, (c) PPT at 1 km, (d) LST at 1 km, (e) SM
observations at 10 km, (f) TB at 10 km, (g) true SM at 1 km, (h) PRI estimate with Gaussian error at 1 km, (i) PRI estimate with Laplacian error at 1 km,
(j) transformation function estimate at 1 km, (k) UT estimate with Gaussian error at 1 km, and (l) UT estimate with Laplacian error at 1 km.

DoY 354, as shown in Fig. 12, exhibits the effect of down-
scaling using PRI on a completely wet day with no vegetation
cover. However, as shown in Fig. 12(d), the remnants of crops
cause variability in SM, which is accurately reflected in the PRI
estimate [see Fig. 12(h)] and also in the UT method estimate
[Fig. 12(k)]. The RMSE is 0.5% less for PRI compared than
the UT method, even for this case with relatively homogeneous
inputs. In constrast, under homogeneous vegetation and PPT
conditions, errors remain very low for both PRI and UT method
as evident on DoY 39, with bare soil, as shown in Fig. 11. The
RMSE’s in this case are 0.01 and 0.03 m3/m3, for PRI and the
UT methods, respectively. The SD are also very low.

On a day with vegetated soil (DoY 135, corn) and hetero-
geneous PPT [see Fig. 13(c)], the UT Method has 1.3% more
RMSE than PRI. The high spatial variability of the inputs (see
Fig. 12) is better estimated by PRI as it uses all the modes and
moments of the data. Similarly, this effect is also cotton season
on DoY 156, as shown in Fig. 14.

During the period when the land is heavily vegetated, the
RMSE’s increase for both the methods as the data exhibits
higher variability. For example, on DoY 222, there is a high
variability in LC, LAI, and TB, with two crops and bare soil,
highly variable LAI having crops of both corn and cotton [see
Fig. 15(b)] and TB [see Fig. 15(f)]. Interestingly, although PPT
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Fig. 14. DoY 156—(a) LC at 1 km (blue represents baresoil and cyan represents cotton), (b) LAI at 1 km, (c) PPT at 1 km, (d) LST at 1 km, (e) SM observations
at 10 km, (f) TB at 10 km, (g) true SM at 1 km, (h) PRI estimate with Gaussian error at 1 km, (i) PRI estimate with Laplacian error at 1 km, (j) transformation
function estimate at 1 km, (k) UT estimate with Gaussian error at 1 km, and (l) UT estimate with Laplacian error at 1 km.

is not very heterogeneous, PRI has 1.1% lower RMSE than the
UT method. The KLD is > 1 for the UT method, indicating that
the downscaled SM has significantly different modes than the
true SM at 1 km. For the PRI, the KLD is < 1 on DoY 222 but
still considerably higher than the other days.

A second-order regression method, such as the UT method,
is expected to behave optimally with Gaussian noise. However,
even with no heterogeneity in PPT and LC on DoY 39, the
RMSE for the UT method with Laplacian noise increases to
0.16 m3/m3, whereas the RMSE for the PRI does not change.
This degradation gets worse for vegetated soil. On DoY 156,
during cotton season, when PPT is high, the RMSE for the UT

method is 5.2%, and PRI increases to 0.89%. The KLD is also
high with the Laplacian noise for the vegetated days, for the
UTD method, even when the KLD with Gaussian noise is close
to 0, as shown in Table III.

VI. SUMMARY AND CONCLUSION

In this paper, we have implemented and evaluated a down-
scaling methodology based upon PRI that preserves the high
variability in SM due to heterogeneous meteorological and veg-
etation conditions. The PRI preserves heterogeneity by utilizing
the data structure rather than the second-order statistics such
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Fig. 15. DoY 222—(a) LC at 1 km (blue represents baresoil, yellow represents sweet-corn, and cyan represents cotton), (b) LAI at 1 km, (c) PPT at 1 km,
(d) LST at 1 km, (e) SM observations at 10 km, (f) TB at 10 km, (g) true SM at 1 km, (h) PRI estimate with Gaussian error at 1 km, (i) PRI estimate with
Laplacian error at 1 km, (j) transformation function estimate at 1 km, (k) UT estimate with Gaussian error at 1 km, and (l) UT estimate with Laplacian error
at 1 km.

as means and variances. The downscaling methodology was
regularized by initial estimates of SM finer spatial resolution by
transforming information embedded within RS products, viz.,
PPT, LST, LAI, and LC, and in situ SM using nonparametric
PDFs. The RMSE and KLD values in downscaled SM at 1 km
for the PRI method, with a Gaussian noise model are both close
to zero for bare soil and increases to 0.01 m3/m3 and 0.66,
respectively, for vegetated LC. The similarity between the KDE
estimates of the true and downscaled SM show that the structure
of the PDF of observations is retained while downscaling. In
contrast, the UT method has a RMSEs and KLDs of upto

0.15 m3/m3 and 1.07, respectively, when the land is vegetated.
These values are close to zero for the bare soil, similar to
the PRI. With a Laplacian noise model, the KLD and RMSE
values for the PRI method remains almost the same as those
for the Gaussian noise model. However, for the UT method, the
RMSE’s and KLD’s increase by almost 100% in some cases,
compared with the values with Gaussian noise model.

It is envisioned that the PRI-based method implemented and
evaluated in this paper will be applied using satellite-based
higher resolution remote sensing data. For example, the PPT
data are obtained from the Tropical Rainfall Measurement and
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TABLE III
RMSE, SD, AND KLD OVER THE 50× 50 km2 REGION FOR THE

DOWNSCALED ESTIMATES OF SM OBTAINED AT 1 km
USING THE PRI AND UT METHODS

Fig. 16. RMSE in downscaled SM and the truth at 1 km as a function of the
SD of errors in the coarse SM at 10 km.

TABLE IV
AVERAGE ABSOLUTE ERRORS (AAE) IN DOWNSCALED SM AS A

FUNCTION OF THE PERCENTAGE OF THE DATA SET USED FOR

TRAINING IN DATA-RICH AND DATA-SPARSE REGIONS

Global Precipitation Measurement missions and the LAI, LST,
and LC products are available from the Moderate Resolution
Imaging Spectroradiometer sensor aboard Aqua and Terra
satellites.
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