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Abstract—An novel algorithm is proposed to downscale mi-
crowave brightness temperatures (TB), at scales of 10-40 km
such as those from the Soil Moisture Active Passive mission
to a resolution meaningful for hydrological and agricultural
applications. This algorithm, called Self-Regularized Regressive
Models (SRRM), uses auxiliary variables correlated to TB along-
with a limited set of in-situ SM observations, which are converted
to high resolution TB observations using biophysical models. It
includes an information-theoretic clustering step based on all
auxiliary variables to identify areas of similarity, followed by a
kernel regression step that produces downscaled TB. This was
implemented on a multi-scale synthetic data-set over NC-Florida
for one year. An RMSE of 5.76 K with standard deviation of
2.8 K was achieved during the vegetated season and an RMSE
of 1.2 K with a standard deviation of 0.9 K during periods of
no vegetation.

I. INTRODUCTION

Spatio-temporal distribution of soil moisture (SM) heavily
influences atmospheric and hydrological processes. Accurate
SM at spatial scales of 1-5 km is critical for agricultural
applications such as drought monitoring, risk management,
and productivity predictions, with major implications for food
security and sustainability. Microwave observations at frequen-
cies <10 GHz are very sensitive to SM in the top 5-10 cm,
due to large differences in dielectric constants of dry and wet
soils and have been widely used to retrieve SM [1], [2].

Most downscaling studies have downscaled SM derived
from microwave observations [3], while very few studies have
downscaled satellite TB observations directly to match model
scales. Even for 5 simple soil moisture scenarios with limited
variability, and ignoring errors due to model inadequacies,
input parameter uncertainties and sensor calibration errors, the
resulting error due to sub-footprint variability, was found to be
multi-modal and, in some scenarios, had an root mean square
error of 0.09 m3/m3. Downscaling such a biased product will
only increase the final error, even if the downscaling method
has built in corrections for physical and meteorological hetero-
geneity. Thus, downscaling TB directly and then assimilating
the downscaled product into hydrology models or crop growth
models may significantly improve root zone soil moisture and
crop yield estimates. Piles et. al. [4] downscaled TB directly
into SM by applying the class of methods known as Universal
Triangle (UT) method to the problem and used a linear
regression based linking model to relate low resolution SM to

H-Pol and V-Pol TB from the SMOS mission, and other high
resolution products, aggregated to the resolution of SMOS
observations. Subsequently, using the assumption that the same
relationship holds at high resolution, they estimated SM at
1 km. The assumption of scale invariance is not theoretically
substantiated and has been found to result in high downscaling
errors, particularly during heterogeneous land cover (LC) con-
ditions [1]. Das et. al. [5] used the correlations between fluc-
tuations of passive radiometer observations and active radar
backscatter using a time series approach to obtain a merged
SM product at 9 km. Some studies have used statistical inver-
sion techniques like linear inversion with regularization [6],
Singular value decomposition (SVD) [7] and gradient descent
in Banach spaces [8]. A major drawback in these approaches
is the assumption of static vegetation conditions and in-
footprint spatial homogeneity. Scaling algorithms based upon
second-order statistics can potentially lead to significant loss of
structural information in the data [2], especially under highly
non-linear heterogeneous and dynamic conditions. Studies
involving heterogeneous and dynamic land cover conditions,
such as agricultural regions are necessary to understand the
validity of downscaling algorithms over real data. In this study,
a novel algorithm is presented that downscales TB directly
using auxiliary information provided by satellite derived LST,
Leaf area index (LAI), precipitation (PPT) and LC at high
resolution in conjunction with a very limited set of in-situ SM
observations. The in-situ SM observations are converted into
TB observations using a biophysical model. In the absence of
in-situ SM observations, airborne or in-situ TB observations
can also be used for training. In areas without any high reso-
lution data, representative data from other regions with similar
topography, slope and soil texture can be used. This algorithm,
based on self-regularized regressive models (SRRM) does not
make any assumptions about the vegetation conditions and
uses higher order statistical descriptors to downscale, and
quantify the efficacy of downscaling. The goal of this study
is to implement a downscaling algorithm that disaggregates
coarse-scale remotely sensed products with auxiliary fine-scale
data. The primary objectives are to, 1) estimate TB at 1 km
using TB at 10 km and other spatially correlated variables
for a multi-scale synthetic dataset [9] based in North-Central
Florida, and 2) to conduct a thorough statistical analysis of the
downscaled TB in order to evaluate the efficacy of the SRRM

978-1-4799-5775-0/15/$31.00 c©2015 IEEE 121 IGARSS 2015



LC

LAI

PPTGPM/TRMM

VSMin situ

1
0

k
m

1
k
m

PPT (3-day)

LST

CLUSTER

LABELS

C
L

U
S

T
E

R
IN

G

TB,SMAP/SMOS

TB,SRRM

KERNEL 

REGRESSION

In
-s
it
u

BIOPHYSICAL 

MODEL
TB,TRAIN

Fig. 1. Flowchart of the SRRM algorithm

downscaling algorithm.

II. THEORY

In this study, shown as a flow diagram in Figure 1, a num-
ber of models are created dynamically based on generalized
proximity regions in the high dimensional correlated data.
The membership of a pixels to a model is fuzzy, constrained
to a sum of one across the model space. The models itself
are trained using a kernel regression based method. The first
step of the algorithm, which clusters the study area into
proximity regions, is described below. A clustering algorithm
which uses information theoretic measures of inter and intra
cluster similarity is used [10]. The membership vectors are
not discretized after each step to decrease downscaling errors
along cluster boundaries. The cost-function is regularized
using the weighted Shannon entropy of the membership vector,
such that the membership vectors are sufficiently sparse, as
follows.
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Getting the correct membership vector then is equivalent to
solving this constrained optimization problem:

minm1,...,mN Ĵ
REG
CS (m1, . . . ,mN )

subject to mT
j 1− 1 = 0, j = 1, . . . , N (2)

This can be solved using Lagrange multipliers and a
stochastic gradient descent scheme to compute optimum values
of m. In the second step, a kernel based regression technique
that uses a training set of pixels and fits a function to it,
by minimizing the representational error, is used to generate
the downscaled estimates. Ridge regression is a parametric
regression technique that adds a scaled regularizing term to the
cost function to to increase generalization. The cost function
for ridge regression is

E (w,x) =
1

2

∑
i

(yi − wTxi)
2 +

1

2
µ‖w‖2 (3)

The weights can be calculated by differentiating the error
cost function with respect to the weights and setting it to

zero. If this computation was carried out in a Reproducing
Kernel Hilbert Space (RKHS), then the inner-products can
be replaced with a kernel evaluation. Let H be a Hilbert
space with an inner-product metric < ·, · >H. Then according
to the representer theorem, a kernel function κ(x,y) exists
on RN × RN such that < x,y >H= κ(x,y). Now, if
Φ : RN → RN is a mapping that transforms the feature vector
in the original vector space to H, then the weights can de
redefined as,

w = (µID + ΦΦT)−1Φy (4)

Then, the estimated value of y for a new data-point x′ is,

ŷ = wTΦ(x′) = y(µIN + K)−1κ(x,x′) (5)

where K is the Gram matrix of inner products of all the
training data points. This does not address the constant that
must be present in the regression. To solve this problem, the
feature vector is augmented by adding a constant feature 1 to
all samples.

III. METHODOLOGY

A. Multiscale synthetic dataset

The proposed algorithm for disaggregation was tested us-
ing data generated by a simulation framework consisting of
the Land Surface Process (LSP) model and the Decision
Support System for Agrotechnology Tranfer (DSSAT) model,
described in [9]. A 50 × 50 km2 region, equivalent to 25
SMAP pixels, was chosen in North Central Florida for the
simulations.

Based upon land cover information at 200 m, contiguous,
homogeneous regions of sweet-corn and cotton were identi-
fied. A realization of the LSP-DSSAT model was used to
simulate LST, LAI, and PPT at the centroid of each homo-
geneous region, using the corresponding crop module within
DSSAT. The model simulations were performed using the
200 m forcings at the centroid. Linear averaging is typically
sufficient to illustrate the effects of resolution degradation [11].
The model simulations at 200 m were spatially averaged to
obtain PPT, LST, LAI, and SM at 1 and 10 km. To simulate
rain-fed systems, all the water input from both precipitation
and irrigation were combined together, and the “PPT” in this
study represents these combined values, representing a rainfed
system.

T1km
B measurements, were generated from SM1km

i for the
entire area, using the widely used τ − ω model [12]. 10 %
of the TB measurements were used for training. The rest
was used as ”truth” for validating the downscaled TB. An
alternative and better approach is to convert the downscaled
TB into SM using an inverse model or assimilation [13], since
SM is the key variable required at high resolution. However,
that detracts from the focus of this study by adding an extra
layer of complexity. A vegetated surface is modeled as a
single isothermal layer of vegetation with diffuse boundaries
[9]. The soil medium is assumed to be non-isothermal, semi-
infinite layered dielectric medium with a rough surface at the
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Fig. 2. Root Mean Square Error (RMSE) and Standard Deviation (SD)
between true TB and downscaled TB at 1 km.

upper boundary. The soil moisture and temperature profiles,
the leaf/ear biomass, vegetation water content, and plant height
provided by the LSP-DSSAT model were used by the MB
model to estimate brightness temperature at L-band. Using
a zeroth-order radiative transfer approach, the total TB of a
terrain is the sum of contributions from soil, vegetation, and
from sky. In this study, similar to [1] the θ was set to 50o, the
Tsky was set to 5K, rp was obtained by integrating the bistatic
scattering coefficients from the IEM model, the RMS height
was 0.62 cm and, the correlation length was 8.72 cm [12].
Other model parameters are set similar to [9].

B. Implementation of Disaggregation Framework based on
Self-Regularized Regressive Models

The simulation period, from Jan 1 (DoY 1) to Dec 31 (DoY
365), 2007, consisted of two growing seasons of sweet corn
and one season of cotton. The LST, PPT, and LAI observations
at 1 km were obtained by adding noise to account for satellite
observation errors, instrument measurement errors, and micro-
meteorological variability, following [14]. Errors with zero
mean and standard deviations of 5K, 1 mm, and 0.1 for LST,
PPT, and LAI, respectively, were added to the values at 10 k.

The SRRM method uses LST, 3-day PPT, LAI, LC at 1
km and TB at 10 km every 3 days as input. In the first
step, the field is clustered using the inputs at 1 km and
the x and y coordinates of each pixel scaled to a range of
0 and 1. This step of the algorithm uses two parameters -
the number of clusters, n and a regularization constant, µ.
Both the number of clusters and the regularization constant
is determined by cross-validating against the absolute mean
error in TB at the end of the second step for each day. The
optimal number of iterations that produces a usable clustering
result is determined by evaluating the root mean square error
(RMSE) for Day 222, characterized by maximum input het-
erogeneity, in disaggregated TB after every iteration, for upto
200 iterations. At the end of this step, each pixel has a vector
of n numbers, (m1,m2, . . . ,mN ) that sum upto 1 describing
its membership to each of the n clusters. In the second step, n
models, f̂1, f̂2, . . . , f̂N are developed using LST, 3-day PPT,

Fig. 3. Day 195 - (a) LC at 1 km (blue represents baresoil, yellow represents
sweet-corn and cyan represents cotton), (b) PPT at 1 km (in m3/m3), (c) TB

at 10 km, (d) True TB at 1 km (in K), (e) Downscaled TB at 1 km (in K), (f)
Absolute Difference Plot between True and Downscaled TB (in K). X-axis
denotes longitudes (◦W) and Y-axis denotes latitudes (◦N) for every plot.

LAI, LC, TB at 1 km and TB at 10 km as inputs to the
regularized kernel regression algorithm described in Section II,
using 10% of the pixels that make up the field. The hard
membership of each pixel, i, for model development purposes
is determined by the maximum value in its membership vector,
mi = (mi

1,m
i
2, . . . ,m

i
N ). The disaggregated value of TB is

computed for each point in the test, represented as a vector,
x′i = (LST1km

i ,PPT1km
i ,LAI1kmi ,LC1km

i ,TB
1km) by,

TB
1km
i = mT ·

(
f̂1(x′i), f̂2(x′i), . . . , f̂N (x′i)

)
(6)

The SRRM method is evaluated by studying the RMSE
and standard deviation of the errors over the entire season.
Moreover, the downscaled TB is plotted versus the true TB,
for each land-cover. To evaluate how close the density function
of the downscaled estimates is to the density function of the
true SM, the KL-Divergence (KLD) between the density of the
estimated observations and the true TB is calculated for differ-
ent LC’s over the season. The PPT, LC, low resolution TB, true
TB and downscaled TB are examined for representative days
when the crop variability and micro-meterological variability
was highest. Quantitative analyses of spatial variations in TB

observed under dynamic vegetation and heterogeneous land
cover conditions provide an index of dynamic errors that can
be expected.

IV. RESULTS

The RMSE and SD of error between true and downscaled
TB at 1 km is shown in Figure 2. The standard deviation
increases from below 3 K to almost 7 K during the vegetated
season. This is due to a large difference in errors with most
of the errors originating from pixels on the field boundaries.
A Z-test was performed which showed that the errors lie
under 10 K overall for more than 95% of the pixels. They
were found to be the highest during the growing season for
sweet-corn and cotton, and the late season baresoil land cover
after harvest, due to residual vegetation after harvest. Figure 4
shows the errors for each land-cover. The errors are high,
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TABLE I
RMSE, SD, AND KL DIVERGENCE OVER THE 50×50 KM2 REGION FOR

THE DOWNSCALED ESTIMATES OF SM OBTAINED AT 1 KM USING THE PRI
AND UT METHODS. (A - BARESOIL PIXELS WITH VEGETATED

SUB-PIXELS AT 250 M TILL DOY 332, B - BARESOIL PIXELS AFTER DOY
332 AND C - BARESOIL PIXELS WITHOUT ANY VEGETATED SUB-PIXELS

AT 250 M TILL DOY 332)

Land Cover KLDSRRM RMSESRRM SDSRRM

Corn 1.8615× 10−17 4.1 K 2.5 K

Cotton 2.4828× 10−04 3.7 K 3.4 K

BaresoilA 5.6222× 10−5 7.7 K 1.51 K

BaresoilB 5.628× 10−6 8.1 K 1.8 K

BaresoilC 2.5948× 10−6 1.2 K 0.9 K

(a) (b) (c)

Fig. 4. Disaggregated TB vs. True TB at 1 km during the whole season for
(a)baresoil pixels (b)corn pixels, and (c)cotton pixels. Lines corresponding to
10 K error in TB are shown for each plot.

during the vegetated season, for baresoil land-cover due to sub-
pixel heterogeneities. Pixels at 1 km are classified as baresoil
when less than half of the area is cultivated. These impure
pixels contribute to the high error. This is also evident in
Figure 3, which shows the LC, PPT, TB at 10 km, true TB,
downscaled TB, and the absolute difference between true and
downscaled TB at 1 km for Day 195. The absolute difference
plot indicates that the maximum errors occur at the edges of
the fields which confirms the impure pixel hypothesis. The
true and downscaled TB are very similar which shows that
the algorithm can perform well during heterogeneous micro-
meteorological conditions.

The RMSE, SD and KL-Divergence (KLD) over the whole
season is shown in Table I. Baresoil pixels at the end of the
season affected by remnant crops and impure pixels have a
higher KLD, but very close to 0. Vegetated pixels at 1 km
have a higher KLD as well. Vegetated pixels with baresoil
impurities contribute to these errors. As expected the RMSE
is lowest during early season baresoil, when the downscaled
estimates are almost perfect. The RMSE’s and SD’s increase
during the growing season, which is expected due to the
complexity introduced by different land-cover types.

V. CONCLUSION

In this study, a downscaling methodology for TB, based
upon SRRM models, was implemented and evaluated to work
with an RMSE of 5.76 K with standard deviation of 2.8 k,
during the vegetated season, and an RMSE of 1.2 K with
a standard deviation of 0.9 K during periods of no vegeta-
tion. Thus this algorithm will be particularly useful during
heterogeneous LC and micro-meteorological conditions, with

limited set of training observations available. It is envisioned
that this algorithm will be applied using the SM observations
available from the soon to be launched NASA-Soil Moisture
Active Passive (SMAP) mission in conjunction with remotely
sensed LST, LAI and PPT data from other satellites in the
Earth Observing System. Future scope of research includes
data-fusion of SMOS observations of TB at multiple angles
with SMAP TB to increase the information content in the
low resolution product for better downscaling accuracies, and
using variational data-assimilation to calculate SM from the
downscaled TB.
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