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Abstract—This study investigates the effects of agricultural
drought on crop yields, through integration of crop growth models
and remote sensing observations. The soil moisture (SM) product
fromSMandOcean Salinity (SMOS)mission obtained at 25 kmwas
downscaled to a spatial resolution of 1 km, compatible with the crop
models. The downscaling algorithm is based upon information
theoretic learning and uses data-driven probabilistic relationships
between high-resolution remotely sensed products that are sensitive
to SM and in situ SM. The downscaled SM values are assimilated in
the crop model using an Ensemble Kalman filter-based augmented
state-vector technique that estimates states and parameters simul-
taneously. The downscaling and assimilation framework are
implemented for predominantly agricultural region of the lower
La-Plata Basin (LPB) in Brazil during two growing seasons. This
rain-fed region was affected by agricultural drought in the second
season, indicated by markedly lower precipitation compared to the
first growing season. The downscaled SMwas compared with the in
situ SM at a validation site and the root mean square difference
(RMSD) was . The crop yields estimated by the
downscaling–assimilation framework were compared with those
provided by the Companhia Nacional de Asastecimento (CONAB)
and Instituto Brasileiro de Geografia e Estatistica (IBGE). The
assimilated yields are improved during both seasons with increased
improvement during the second season that was affected by agri-
cultural drought. The differences between the assimilated and
observed crop yields were 16.8% during the first growing season
and 4.37% during the second season.

Index Terms—Agricultural drought, crop growth models, data
assimilation, data fusion, downscaling, microwave remote sensing,
soil moisture (SM).

I. INTRODUCTION

D ROUGHT is one of the major natural hazards causing
losses worth billions of dollars each year. Typically,

drought indices (DIs) that are functions of parameters such as
precipitation (PPT), evapotranspiration, soil moisture (SM), land
cover (LC), and leaf area index (LAI) are used by various
agencies such as International Production Assessment Division
to help asses and respond to drought [1]–[3]. These indices are

mostly applicable for assessing meteorological droughts that are
characterized by lower than expected precipitation in a region.
Many indices, such as in the standardized precipitation indices
(SPIs) [4], use precipitation maps as the only input. Precipitation
has also been used indirectly as an indication of SM using water
balance models, e.g., the Palmer 2 layer model, that use the
palmer drought severity index (PDSI); the crop condition data
retrieval and evaluation (CADRE) data basemanagement system
(DBMS); and the multilayer SM schemes in land surface models
(LSMs) in the North American Land Data Assimilation System
(NLDAS) [5]. However, these DIs are not accurate in predicting
and monitoring agricultural droughts that are characterized by
prolonged periods of reduced SM in the root zone (RZSM). In
addition, the models used to estimate the DI typically assume
constant LS, soil properties, and topography [6]–[8]. For droughts
in vegetated regions, Brown et al. [2] proposed a composite DI
called VegDRI that uses supervised classification and regression
to a database with four temporally static biophysical variables and
micrometeorological conditions from the past 16 years to form a
seasonal model. The model is applied to current geospatial data to
classify drought-induced vegetation stress into seven classes [9],
[10]. The methodology has been tested across seven states in the
US andwas found to performmuch better at estimating crop stress
than traditional DIs. However, this approach does not provide
quantitative crop yield estimates.

Assessing agricultural droughts is important in accurately
quantifying their impacts on crop yields, particularly in rain-fed
systems. One of the reasons the global crop yields are not
accurately estimated in the presence of agricultural drought is
the imperfect regional characterization of RZSM, based on only
sparsely available in situ measurements [7]. Satellite-based SM
products, from microwave sensors, such as those aboard the
European Space Agency-SM and Ocean Salinity (SMOS) mis-
sion [11], are available every 2–3 days at a spatial resolution of
25 km. The plannedNASA-SMActive Passive (SMAP)mission
will use a combined active and passive microwave system at
L-Band to provide SM at spatial resolutions of 36 and 9 km [12].
However, satellite-derived SM estimates are indicative of SM in
the top 5–10 cm of the soil (henceforth, near-surface SM) and
may not be good indicators of RZSM for agricultural drought
assessments. This near-surface SM is incorporated into a water
balance model to provide RZSM, e.g., in [13]. However, for
applications in heterogeneous areas under dynamic LC such as in
agricultural regions, these coarse scale SM or RZSM have to be
spatially downscaled.

Recent studies have implemented various approaches to
downscale coarse-scale SM products to spatial resolutions that
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can be used for agricultural studies. Empirical models based
upon statistical methods such as regression [14]–[16], multiscale
tree [17], and geostatisticalmethods such as co-kriging and block
kriging have been used to extract fine scale SM information from
diverse coarse scale RS products. Another class of techniques
employ the triangle method [18], [19] using statistical models to
extrapolate the dependent data within a hypothetical triangle
formed by the observed data, [20], [21]. Piles et al. [21] devel-
oped a linking model from the triangle formed by the observed
data at coarse scale and applied the model to data at finer scale,
assuming equivalence at both scales.Merlin et al. [20] calculated
soil evaporative efficiency [22] as a function of NDVI and LAI
and used the triangular relationship between the efficiency and
SM at the two scales to obtain high-resolution SM estimates.
Both the methods were validated using data from the Murrem-
bridge River catchment area in Southern Australia during the
National Airborne Field Experiment ’06 [23]. Piles et al. [21]
used data from 3 days during a 4-week period in January and
February 2010. Lack of NDVI observations from MODIS
limited their validation study to just 3 days. Although the annual
precipitation and LCs in the area was heterogeneous, the valida-
tion limited the diversity. Drusch et al. [24] used model clima-
tology to downscale SM but the estimates were found to have
significant bias [25]. The robustness of these methods over
different vegetation and precipitation conditions remains largely
unknown.

The downscaling algorithm based on the principle of relevant
information (PRI) offers a robust alternative to spatial down-
scaling algorithms that use hierarchical models or empirical
relationships across different scales. The PRI is based upon the
measures of entropy and mutual information and provides a
hierarchical decomposition of spatial data that is optimal in
terms of transfer of information across spatial scales [26].
Statistical data descriptors beyond the second-order moment
are necessary to capture the complete stochastic structure of
data and to preserve maximum information to achieve optimal
downscaling, especially over heterogeneous and dynamic en-
vironments. The algorithm uses all the statistical moments of
the data and other information theoretic data descriptors to
downscale SM across scales. Because it is primarily data driven
and does not employ complex stochastic models, unlike the
SVMs and Neural Networks, it is computationally more tracta-
ble [27]. Recently, the PRI-based downscaling methodology
was evaluated using synthetic observations in North Central
Florida and compared with Universal Triangle method [21].
The PRI was found to be robust in heterogeneous and dynamic
agricultural region and during changes in micrometeorological
conditions [28].

As mentioned before, the remotely sensed near-surface SM
can be assimilated in a land surface [29] or a crop growth model
[30] to provide optimal estimates on RZSM. Such mechanistic
crop growth models are typically used to simulate growth and
development to estimate crop yield and biomass [31]–[33].
However, uncertainties in these estimates increase over time,
due to errors in computation, initial conditions, forcings, and
model parameters. Satellite-derived SM estimates can be used to
reduce the model bias through data assimilation techniques in
which state and parameters are simultaneously updated using

either EnsembleKalmanfilter (EnKF) [29], [30] or particle filters
[34]. Errors caused by parameter uncertainty can also be
accounted for by using the augmented state vector technique in
the EnKF-based assimilation algorithm. Li et al. [35] assimilated
the Advanced Microwave Scanning Radiometer-Earth Observ-
ing System (AMSR-E) SM retrievals into the Noah LSM and
found that the SM fields are less biased if a mass conservation
scheme is implemented. This did not result in the expected
maximum minimization of the estimation error because the
algorithm only updated states and not parameters in the EnKF,
and because the retrievals were not downscaled prior to using
them in the model [35]. Kaheil et al. [36] used support vector
machines (SVM) combined with variogram analysis to down-
scale and assimilate SM observations from airborne imagery
from a scale of 800 to 50m. Extending SVM-basedmethodology
to coarser scales of satellite observations may be difficult due to
computational complexity and over-fitting the training data [37],
further complicated during dynamic vegetation and heteroge-
nous micrometeorological conditions.

The goal of this study is to understand the impacts of agricul-
tural drought on crop yields through integration of remote
sensing observations and crop growth models. The primary
objectives of this study are to: 1) downscale near-surface SM
from SMOS obtained at 25 to 1 km for two growing seasons in
the rain-fed Brazilian region of the La-Plata Basin (LPB) (Fig. 1)
using PRI. The two growing seasons primarily differ in the total
PPT received and 2) assimilate the downscaled SM at 1 km into
the decision support system for agrotechnology transfer
(DSSAT) cropping system model [31] in agricultural regions
under dynamicmicrometeorological conditions. Fig. 2 shows the
overall flow diagram to achieve the two objectives.

In Section II, we describe the region where the downscaling
and assimilation algorithms were implemented, and the
micrometeorological, remotely sensed and in situ data used in
the study.

Fig. 1. Study region in LPB showing the in situ data sites. The green circles
represent the in situ sites used for transformation function and red square
represents the in situ site for validation of the methodology.
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II. STUDY REGION AND DATA SETS

The study was conducted in region of a in
LPB in Brazil, stretching from 27 to 30 and 51.5 to 55 ,
as shown in Fig. 1. The LPBwith an area of about is
one of the largest river basins in the world and includes parts of
five countries, namely Argentina, Bolivia, Brazil, Paraguay, and
Uruguay. The region is a major agricultural region of economic
importance for all the countries [38]. The basin is vulnerable to
high losses in crop yields due to agricultural drought. Climate
change is predicted to continue to produce warmer and drier
climate in the region.

To downscale SMOS SM at 25 km to 1 km, satellite-based
observations of LAI, LC, LST, and PPT, in situ observations of
SM and soil texture were used. The satellite-based observations
used in this study along with their spatiotemporal resolutions are
listed in Table I. The 3-h PPT data were averaged over a 3-day
time period using a moving window to obtain 3-day averaged
PPT. Observations at three in situ sites were used to obtain the
transformation function for downscaling SM observations.
These, along with the fourth site used for validation, are listed
in Table II. The satellite data used for the DSSAT forcings are
also listed in Table I. Daily aggregated values of PPT were used
as DSSAT forcing.

The predominate soils in the Brazilian LPB region are red
Latosols (Oxisols), which are characterized by their structural
stability due to a high Fe and Al oxide content and a clayey
texture, with 30%–60% clay [39]. As clay is the major soil
component in the region, mass fraction of clay (MC) is used as an
indicator of soil texture in the algorithm. The soil texture
information was obtained from the ISRIC-WISE soil profile
database [40]. The region consisted of primarily soybean crop,
with the growing season from September to April. The wilting
point, field capacity, porosity, and hydraulic conductivity were
obtained from the DSSAT V4.5 soils database.

III. THEORY

A. PRI Downscaling Framework

The downscaling methodology using PRI is implemented in
two steps.

1) An initial estimate of SM is obtained at 1 km using
transformation functions that relate LST, LAI, PPT, LC,
andMC to in situ SMat the same spatial resolution of 1 km.

2) This initial estimate is merged with the SM observations at
the coarser resolutions of 25 km using PRI, to obtain
improved estimates of SM at 1 km.

1) Step 1: Transformation of LST, LAI, PPT, LC, and MC at
1 km for Initial Estimates of SM at 1 km: The main objective of
the transformation process is to obtain a probabilistic relationship
between SM at 1 km using information from LST, LAI, 3-day
PPT, LC, and MC obtained at the same scale. A discrete
formulation of the Bayes rule is used to estimate in situ SM, as
given in (1), whereas SM is discretized into classes, ,
LST into classes , LAI into classes

, 3-day PPT into classes
, LC into classes , and MC into

classes

A nonparametric probability density function (pdf) estima-
tion technique known as Parzen windows [41] was used to
estimate the pdf, ,
in (1). In this technique, symmetric functions, known as
kernels, are used to estimate the pdf of a random variable
based on a finite set of data samples. The kernels assign
weights to each of the samples based upon their distance from
the point at which the pdf is estimated, with higher weights
being assigned to the samples that are closer to the point. In this
study, a zero-mean, unity-variance Gaussian function was used
as the kernel. With Gaussian kernels, the weight decreases
exponentially with the square of the distance, rendering the
distant points irrelevant.

Fig. 2. Flow diagram of the integration of remote sensing observations and crop
growth model in this study.

TABLE I
SATELLITE OBSERVATIONS

aData used for transformation function training.
bData used for forcing DSSAT.
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Given training samples
, the probability of LST, LAI, LC, PPT, andMC belonging

to classes , respectively, for a
known is represented as

and computed using (2). The pdf is estimated at
all combinations of LST, LAI, PPT, LC, and MC classes
resulting in a pdf of dimension

where is the Gaussian kernel and , is a
smoothing parameter, which relates to the variance in for LST,
LAI, PPT, LC, and MC, respectively. The parameter was
determined based on Silverman’s rule, which is a standard rule-
of-thumb that is used in kernel-based estimation algorithms [42],
as given in (3). The pdf in (1) is a one-dimensional pdf
that was computed at points

where and are the standard deviation
and interquartile range, respectively, computed from the
samples for LST, LAI, PPT, LC, and MC.

Computing the above pdfs from the training samples can be
viewed as a learning step. Given LST, LAI, PPT, LC, and MC
information at 1 km, the initial estimates of SM at 1 km are
obtained using (1).

2) Step 2: Downscaling SM Using PRI: The PRI provides a
hierarchical decomposition of spatial data that is optimal in terms
of transfer of information across scales, by minimizing or

maximizing a balance between entropy and the Kullback–
Leibler (KL) divergence of the original data with respect to its
upscaled or downscaled versions [41]. While entropy is a
redundancy reduction term, the KL divergence is an informa-
tion preserving term. If entropy ismaximum,whileKL-divergence
is 0, the observations remain the same, while if KL-divergence is
high with zero entropy, the data set is represented by a single
point, the mean. Depending on the proportion of the two
metrics, one can find a range of structures, which can be cast
as an information extraction process. The optimization equation
for PRI is

where is the cost function, is the pdf of the original data,
is the pdf at each iteration, is the entropy, andKL is the

KL divergence. The is a user-defined weighting parameter that
balances the redundancy and information preservation in .
As the value of increases, the cost function gives more
and more emphasis to KL, thus preserving more information
about the data at the cost of extremely high-redundancy
reduction. Equation (4) may be rewritten in a different form
by using Renyi’s quadratic entropy ( ) and cross-entropy
( ), respectively, [43], to obtain a more practical cost
function , namely

An iterative solution can be obtained by
taking the derivation of with respect to and equating it to
0. The resulting fixed-point rule is given as

TABLE II
SITES FOR IN SITU SM DATA

aSite used for validation.
SINDA, Sistema Nacional de Dados Ambientais National System of Environmental Data.
UFRGS, Universidade Federal do Rio Grande do SUL.
CRE , crop rotation experiment.
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where

is the information potential [44] of data points in
is the cross-information potential between data

points in and , and are the number of data points
in and , respectively, represents the iteration, and is the
Gaussian kernel.

To illustrate the functionality of the PRI, a simple example
created by a set of Gaussian clusters placed in a circle is shown in
Fig. 3(a). The variable in (5) is initialized to the simulated
Gaussian cluster data set ( ). Applying the PRI for different
values of reveals, various structures relevant to the data set. At
one extreme, we have a single point, and at the other extreme, we
have the data itself as the solution. As we move from one end to
another, the PRI displays the modes and principal curves reveal-
ing different hierarchical levels of structure from the data.

The implementation of PRI was slightly modified for down-
scaling SM. Instead of initializing to , the initial estimates of
SM at 1 km obtained from Section III-A1 were used as in (5).
SM at 10 km was used as . Under the assumption that and
represent the same imagery using different measurements, the
crossentropy term should be largest when they coin-
cide. This condition is obtainedwhen in (5). However, this
case provides the best downscaled supported by , in spite of
the fact that represents only an approximate and coarse-level
information on SM. In this study, an intermediate value of
was chosen so that the PRI-image would approximate the mean
level of SM at coarse scales but will also embed the level of detail
provided by the initial estimates of SM at 1 km, to obtain
morphed estimates of SM at 1 km.

B. Decision Support System for Agrotechnology Transfer

The DSSAT is a suite of crop growth models for 28 different
crops. The DSSAT model used in this study is the nonlinear
CROPGRO soybean model [45], which has been extensively
applied in different regions of the world [46]–[48]. The model
simulates crop growth and development at a daily time step and

estimates yield and biomass. The model consists of modules for
weather, fieldmanagement, soil, and development and growth of
the plant. The minimum weather inputs to the weather module
are daily solar radiation, maximum and minimum temperature,
and precipitation. The field management module contains the
planting information such as date, row spacing, and plant
population, irrigation (if applicable), fertilizer, and harvest date.
The soil module includes soils that are divided into user-defined
layers, and each layer has specific properties. In this study, the
soil was composed of two layers, a surface layer from 0 to 5 cm
and a deeper layer from 5 to 120 cm, with the same constitutive
properties, characteristic of soils with high clay content. The
parameters of the first layer are updated during assimilation,
whereas the parameters of the second layer are assumed to stay
the same during each season. Root-zone SM (RZSM) was
calculated using the following equation, where indicates the
total number of layers within the root zone and is the
thickness of the layer

where is the SM at depths 0–5 cm, for and 5–120 cm,
for .

C. Assimilation Algorithm—EnKF

The SM in the top 5 cm of the soil ( ) is the SM obtained
using the PRI downscaling algorithm. These are assimilated
using an augmented state vector technique with the EnKF-based
algorithm. The EnKF algorithm propagates an ensemble of state
vectors in parallel such that each state vector represents one
realization of model replicates. For each ensemble member, the
state equation in the EnKF is [49], [50]

where is the DSSAT model and is the state of the th
realization prior to the update at time ; is the posterior state
of the th realization at time represents the meteoro-
logical forcings (e.g., temperature, precipitation, and solar

Fig. 3. (a) Conventional implementation of PRI where is initialized to a sample data set , producing different nonlinear tranformations in -based upon .
(b) Implementation of PRI for downscaling bymorphing and , where and are initialized to the observations obtained from the transformation step at 1 km and
the coarse-resolution satellite observation at 10 km.
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radiation), is the posterior estimate of parameters of the
nonlinear model (e.g., soil and cultivar parameters), and is
the model error. The model physics were assumed to be perfect,

in this study.
The A matrix, which holds the ensemble of state vectors, can

be written as, , where represents each
member of the ensemble and represents number of ensemble
members. The observation equation that relates the prior state to
the observations ( ) can be expressed as

where is the measurement operator relating the state vari-
ables to the observations, and is the error associated with the
observations. The ensemble of perturbed observations can be
expressed as and the ensemble of pertur-
bations as . Then, mathematically, the EnKF
can be represented as

where denotes the ensemble of prior states and denotes
the ensemble of posterior states, is the Kalman gain, is the
ensemble of perturbed observations, and is the operator
relating the ensemble of perturbed observations to the ensemble
of states. The Kalman gain can be calculated as [51]

where represents the prior ensemble covariancematrix and
is the observation error covariance matrix. Then, the final update
equation is

IV. METHODOLOGY

A. PRI-Based Downscaling Algorithm

The PRI downscaling methodology has two steps, as
described in Section III-A (Fig. 4). The transformation function
is obtained using in situSMat the three data sites listed in Table II
and satellite observations of LAI, LST, 3-day PPT, LC, and MC
at those sites. The soil texture, indicated by MC, is discretized

into three ranges of mass fractions, 0–0.36; 0.37–0.45; and
0.45–0.6, as shown in Fig. 5. In this study, the transformation
function is assumed spatially invariant over areas with similar
soil texture, given similar soil characteristics, and the predomi-
nant LC of soybean in the region. The initial estimate of SM is
obtained during the two seasons, from September 1 (DoY 244) to
April 30 (DoY 120), in 2010 and 2011, using (1). The SM
estimated using the transformation function were compared with
the in situ data at the validation site (Site 1 in Table II) to test the
validity of the assumption of spatial invariance.

In the second step of the PRI algorithm, the initial SM at 1 km
was merged with the SMOS SM data at 25 km, using (6) to
obtained the downscaled SM at 1 km. The SMOS data were bias-
corrected by the regional mean of the SMOS SM data at 25 km
and the regional mean of the first estimate, during the season.

B. DSSAT Simulation

The DSSAT simulations were conducted for two seasons in
2010–2011 and 2011–2012, both starting 75 days prior to
planting on September 1 (DoY 244) and ending about 30 days
after harvest on April 30 (DoY 120). The first season represents a
“normal” year with a total PPT of 859 mm, whereas during the
second year, there was an agricultural drought, with a total PPT
of 389 mm over the region. Soybean planting density was 18
plants permwith a row spacing of 0.45m [52]. Three distinct soil
types, clay (C), clay loam (CL), and sandy clay loam (SCL) were
created using the DSSAT V4.5 soil database. The soil properties
for each are listed in Table III. These properties match the three
clay categories used in the transformation function, as shown in
Fig. 5.

The structure of DSSAT V4.5 does not allow the model to
restart within season with posterior states, after assimilation. In
this study, the DSSAT simulations were interrupted on the days
when SMOS SM were available observations by setting the
harvest date to the observation dates. Setting the harvest to an
earlier date does not impact the growth or development of the
crop in the model. The posterior states and parameters from
assimilation were stored in a file. The simulation was restarted
from the planting datewith the original initial values of the states,
but with updated parameters. At the time of observation, the

Fig. 4. Flow diagram of the PRI downscaling algorithm.

Fig. 5. Soil texture classes, as indicated by volume fraction of clay in the region.
Red indicates a clay volume fraction of 0–0.36, green indicates a clay volume
fraction of 0.37–0.45 and blue indicates a clay mass fraction of 0.45–0.6.
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updated states from the file were inserted in the model and the
simulation propagated until the next observation date, as shown
in Fig. 2.

C. EnKF Implementation

Among the inputs to the DSSAT model, precipitation obser-
vations typically have the highest error compared with other
micrometeorological parameters. The errors can range between
2.9% and 12.3% of the total rainfall, depending upon the
intensity and duration of the rainfall [53], [54]. A Gaussian
observation error with a standard deviation of 12% of the
observed value of precipitation was introduced at the time of
precipitation. No error was introduced when there was no
precipitation. The uncertainty in two soil parameters were
included in the DSSAT simulations. Drainage rate and porosity
were randomly generated from a uniform distribution. The

cultivar parameters were taken from the DSSAT model. Out of
the 49 total soybean varieties in the DSSAT database, 12
varieties were chosen within maturity groups 4–6 [55]. Fifty
ensemble members are created from this data for assimilation.
The four other soil parameters were obtained from the DSSAT
V4.5 Soils as mentioned in Section II. This ensured that the
relationships among the coefficients were maintained.

The downscaled SM obtained from Section IV-A was per-
turbed with a Gaussian error of zero mean and
standard deviation, to obtain the 50 ensemble members for
the EnKF implementation [11]. The augmented state vector
involved and states and drainage rate and
porosity parameters that were updated during assimilation, with

estimated from (7). The parameters estimated are exam-
ined over the two seasons to understand the impact of assimilation.

The SM values with and without assimilation obtained
from the DSSAT were compared with the SINDA validation

TABLE III
SOIL PROPERTIES FOR THREE SOIL LAYERS

LL is the lower limit, DUL is the drain upper limit, is the saturated hydraulic conductivity, is the bulk
density, SAT is the saturated soil water content, and SM is the soil moisture.

Fig. 6. First estimate of SM using transformation function and in situ SMduring September to December 2010, at the SINDA station in Julio Castilhos, Rio Grande do
Sul, which is the SM validation site. The precipitation, during that period, is also shown.
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site (Site 1 in Table II). The assimilated and open loop crop
yields obtained from the DSSATmodel are also comparedwith
the crop yield statistics provided by the Companhia Nacional
de Asastecimento (CONAB) and Instituto Brasileiro de

Geografia e Estatistica (IBGE) to understand the feasibility
of the downscaling and assimilation framework to estimate
crop yields during normal and drought-impacted growing
seasons.

Fig. 7. KDE of the PRI estimated SM and the assimilated SM using Ensemble Kalman filters.

Fig. 8. Inputs and Results for 2010–2011 season over the study region. (a) Maximum land area index. (b) Total precipitation (mm). (c)Mean land surface temperature
(K). (d) Mean daily solar radiation ( ). (e) Mean air temperature (K). (f) Mean SMOS SM at . (g) Mean SM-PRI is the downscaled SM at

. (h) Assimilated SM ( ). (i) Final crop yields (kg).
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V. RESULTS AND DISCUSSIONS

A. PRI-Based Downscaling Algorithm

The initial estimates of SM were obtained at 1 km using the
transformation function that extracts the structure and heteroge-
neity in the spatial distribution of SM. Fig. 6 shows the compari-
son of the in situ SM and the initial estimate, with the 3-day PPT,
at the SINDA station in Julio Castilhos, Rio Grande do Sul,
during the growing season in 2010. The in situ SM is well
approximated by the initial SM estimated from the transforma-
tion function, with a root mean square difference (RMSD) of

. The maximum difference of is
during high in situ moisture condition, but low 3-day averaged
PPT. The initial SM estimate follows the trend of the PPT data
closely.

For the second step of the PRI algorithm, the bias-corrected
SMOS SM at 25 km is merged with the initial SM estimate at
1 km. Fig. 7 shows the kernel density estimate (KDE) of the
downscaled SM data, for both the growing season, aggregated
over the region. The growing season of 2010 has higher SM
probabilities than during 2011 season, due to higher PPT. The
modes for the first season suggests that the SM in the region is
between and with dry and flooded
conditions being less probable. For the second season, the

probability is more for lower SM values. Figs. 8 and 9 show
the mean SMOS SM, and the mean downscaled SM, along
with the mean LST, total PPT, and maximum LAI inputs for the
2010–2011 and 2011–2012 season, respectively. The down-
scaled SM at 1 km captures the variability in the inputs and the
SMOS SM. The structure in the soil texture map is preserved by
the PRI while also accounting for the SMOS SM observations.
On wet days, due to cloud cover, the LST data were mostly
unavailable. In spite of some data gaps, PRI can generate an
estimate, using correlations with other physical variables, dem-
onstrating its robustness.

B. DSSAT Simulation and EnKF Implementation

DSSAT was run using the forcings as described in
Section IV-B. Fig. 7 also shows the comparison of the KDE
obtained for the PRI SM at 1 km and the DSSAT estimated SM
after assimilation, for both seasons, averaged over the region.
The KDE of the assimilated SM is smoother compared with
PRI SM, because of the reduction in uncertainties in the
observations by EnKF. The Kullback–Liebler divergence
(KLD) between the downscaled SM KDE, assimilated SM
KDE, and a Gaussian distribution with mean and standard
deviation equal to that of the respective data set was calculated.

Fig. 9. Inputs and Results for 2011–2012 season over the study region. (a) Maximum land area index. (b) Total precipitation (mm). (c)Mean land surface temperature
(K). (d) Mean daily solar radiation ( ). (e) Mean air temperature (K). (f) Mean SMOS SM at . (g) Mean SM-PRI is the downscaled SM at

. (h) Assimilated SM ( ). (i) Final crop yields (kg).
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The KLD for the PRI SM case is 2.13, whereas that for the
DSSAT assimilated SM is 0.6, indicating that the assimilated
SM is closer to a Gaussian distribution. Figs. 8 and 9 show the
mean inputs and outputs of the downscaling and assimilation
algorithm during the 2010–2011 and the 2011–2012 seasons,
respectively. For the 2010 season, the regional crop yield
estimate is lower in areas with high PPT and SM and is lower
in the southern part of the regionwhere the PPT is very low. For
the 2011 season, the crop yield estimate is uniformly low
throughout the region, as is the region. The temporal variation
of the assimilated SM, RZSM, and crop yield, along with the
LAI is shown in Fig. 10. The SM is lower for the 2010–2011
season than for the 2011–2012 season, which is expected since
2011–2012 was a drought season. The LAI is also much lower
for the 2011 season at that site, indicating poor crop health.
Consequently, the crop yield estimates for the 2010–2011
season is also significantly lower than that for the 2011–
2012 season.

As shown in Fig. 11, the updated parameters, porosity
and drainage rate, have similar values for both seasons. For
both seasons, the average porosity is that is

higher than the open loop mean. However,
the drainage rate oscillates around the 0.25 value through
both the seasons. The drainage rate decreases rapidly from
the open loop mean to a minimum of . As the

plant grows, drainage rate increases to 0.37 and
for 2010–2011 and 2011–2012 season, respectively. After
harvest, the drainage rate decreases. This would indicate
more water can be retained in the bare soil. However, as the
plant grows, water is better able to penetrate through the
soil.

The means and standard deviations of the regional crop
yields for the two seasons obtained from DSSAT, with and
without assimilation, are compared with the yields from
CONAB and IBGE Table IV. Although assimilated yields
are improved during both seasons and match well with the
observed yields in the region, with their estimates within one
standard deviation, the improvement was more significant
during the drought season. This indicated the viability of the
downscaling–assimilation framework presented in this study
to understand and predict the impacts of agricultural droughts
through combination of remotely sensed observations and
crop growth models. Moreover, the estimated yields are
within one standard deviation of the published crop yield
values, indicating robustness of the framework. This method-
ology can allow partial sparsity in data as well. The parameter
is useful in dealing with data sparsity. It can be dynamically

adjusted to make the downscaling algorithm respond to
unavailability of data or to availability of data with high
uncertainty.

Fig. 10. Regional mean of (a) the volumetric SM . (b) The root zone SM . (c) LAI. (d) Grain weight (kg) from September to April,
2010–2011 and 2011–1012.
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VI. SUMMARY AND CONCLUSIONS

In this study, the SMOS SM product at 25 km is down-
scaled to 1 km and assimilated into the DSSAT crop growth
model to understand the impact of agricultural drought on crop
yields. The PRI downscaling algorithm utilizes the full pdf
of the data instead of just the first and second moments and
provides reasonable estimates even when some of the auxil-
iary data is not available. The downscaled estimate was
validated by comparing it with the in situ measurement and
was found to have an RMSD of with a maxi-
mum difference of . The downscaled SM was
assimilated using an EnKF technique with simultaneous up-
dates in the states and parameters. The assimilated crop yield
was improved during the two seasons, with a higher improve-
ment during the second season, which was affected by agricul-
tural drought. The crop yield at the validation site provided
by CONAB and IBGE matched well with the observed crop
yields.
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