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Abstract—In this paper, L-band microwave observations were
assimilated using the ensemble Kalman filter to improve root-zone
soil moisture (RZSM) estimates from a coupled soil vegetation
atmosphere transfer (SVAT)-vegetation model linked to a forward
microwave model. Simultaneous state-parameter updates were
performed by assimilating both synthetic and field observations
during a growing season of sweet corn every three days, matching
the temporal coverage of observations from the Soil Moisture and
Ocean Salinity and Soil Moisture Active Passive missions. The
sensitivities of parameters to the states were investigated using
the information-theoretic measure of conditional entropy. Among
the soil parameters, the pore-size index (λ) was the most sensitive
to brightness temperatures (TB) during the early and midgrowth
stages, while porosity (φ) was the most sensitive to TB during
the reproductive stage. In the microwave model, the soil roughness
parameters, root mean square (RMS) height (r), and correlation
length (l) were the most sensitive during the early and mid stages,
while the vegetation regression parameter (b) was the most sen-
sitive during the reproductive stage. In the synthetic experiment,
assimilation of TB provided RMS error reductions in RZSM
estimates of 70% compared to open loop estimates. Minimal vari-
ations in performance were observed across different stages of the
season during the synthetic experiment. However, when field ob-
servations of TB were assimilated, significant differences in RZSM
estimates were observed during different growth stages. Maximum
RMS difference (RMSD) reductions in RZSM estimates of 33.3%
were observed compared to open loop estimates during the early
stages, while improvements of 4.8% and 16.7% were observed in
the mid- and reproductive stages, respectively. Further analyses
of assimilation with field observations also suggest some improve-
ments in the SVAT model are needed for moisture transport
immediately following the precipitation/irrigation events. In the
microwave model, the linear vegetation formulation for estimating
canopy opacity, parameterized by b, was inadequate in capturing
the complexities in TB during stages of high vegetative and repro-
ductive growth rates.
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I. INTRODUCTION

M ICROWAVE signatures at frequencies <10 GHz are
highly sensitive to changes in soil moisture at the top

few centimeters (near-surface). Accurate knowledge of root-
zone soil moisture (RZSM) is essential for near-term climate
predictions, hydrologic, and agricultural research [1], and for
effective water resources management. The near-surface soil
moisture can be linked to RZSM through soil vegetation at-
mosphere transfer (SVAT) models. These models can be cou-
pled with vegetation growth models to estimate RZSM under
dynamic vegetation conditions. However, the coupled models
exhibit large uncertainties in their RZSM estimates due to
accumulation of errors in model formulation, computation,
initialization, and forcings, and due to unresolved heterogene-
ity in model parameters. Such uncertainties can be reduced
by assimilating microwave observations directly into SVAT-
vegetation models that are linked to forward microwave models
[2], [3]. The European Space Agency-Soil Moisture and Ocean
Salinity [4] and the near-future NASA-Soil Moisture Active
Passive missions [5], [6] will provide unprecedented obser-
vations of brightness temperatures (TB) at 1.4 GHz for soil
moisture research, and therefore it is important to understand
and evaluate the impact of using TB in the estimation of RZSM.

Ensemble-based assimilation techniques such as the ensem-
ble Kalman filter (EnKF) are efficient for land data assim-
ilation research and applications since they can be applied
to nonlinear and discontinuous models [7]. In particular, the
EnKF has emerged as the algorithm of choice for soil moisture
data assimilation in many studies [2], [8]–[14]. However, only
a few studies have included EnKF-based assimilation of L-
band microwave brightness temperatures to improve RZSM
estimates. Most of these studies have involved assimilation
of near-surface soil moisture that is derived empirically from
synthetic observations of TB either under static vegetation or
bare soil conditions [15]–[17]. Even fewer studies have utilized
real observations of TB [3], [18], [19] by retrieving soil mois-
ture values from observed TB and assimilating the retrieved
values into an SVAT model. Studies that assimilate observations
of TB to improve RZSM estimates by linking SVAT models
to forward microwave models are very few and are primarily
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synthetic studies [20]. Assimilation of both synthetic and field
observations of TB are necessary to understand the impact of
uncertainties in model biophysics, particularly under dynamic
vegetation conditions.

Simultaneous update of states and parameters using EnKF
provide more accurate RZSM estimates in terms of reducing
the root mean square error (RMSE) compared to state-only
updates when observations of volumetric soil moisture (VSM)
at depths of 2 and 4 cm were assimilated [8], [21]. Simultaneous
estimation of parameters with states can also be used for
addressing bias in models that is not removed by the EnKF
[22]. This is important because, while the observations typically
follow model physics closely in the so-called identical twin
synthetic studies, additional bias may be introduced when field
observations are assimilated, particularly under dynamic land-
surface conditions. Since parameters affect the accuracy of
RZSM estimates, analyses of the impacts of updating differ-
ent parameters in both the SVAT and the microwave model
on RZSM estimates are needed. To our knowledge, studies
involving simultaneous update of states and parameters have
not yet been performed when observations of TB are directly
assimilated into a forward microwave model. Not all parameters
in the SVAT and microwave models are sensitive to the RZSM
or TB observations. According to the hypothesis of equifinality
[23], estimating states and parameters from observations of TB

imposes an inverse problem wherein multiple parameter com-
binations may offer similar RZSM estimates. Unless necessary
steps are taken to identify and include only the most sensitive
parameters to TB and VSM during assimilation, the updates
can either prove ineffective due to equifinality or cause insta-
bilities in the EnKF performance [24]. Reducing the number
of parameters in the update process is also desirable to reduce
computational complexity. In the past, sensitivity studies based
on second-order statistics such as correlation have been used
to select the parameters most sensitive to VSM in an SVAT
model [8]. However, measures that capture information from
higher order moments, such as conditional entropy (CH) from
information theory may be required to analyze the sensitivity of
SVAT model parameters to TB due to the nonlinear relationship
between VSM and TB .

The primary goal of this study is to understand the impact of
assimilating TB observations on RZSM estimation. Synthetic
and field observations of TB from our fifth Microwave Water
Energy Balance Experiment (MicroWEX-5) are assimilated
every three days in a coupled SVAT-vegetation model linked
with a forward microwave model during a growing season of
sweet corn in North Central Florida. The synthetic observa-
tions are used to conduct a comparative study on two sets of
assimilation experiments: 1) simultaneous estimation of states
and parameters; and 2) simultaneous estimation of states and
a reduced set of the most sensitive parameters. The results
from the synthetic experiment are also compared to those using
field observations obtained during the MicroWEX-5. Parameter
convergence and errors in TB and RZSM estimates are analyzed
over different growth stages of the sweet corn season to un-
derstand the seasonal impact of assimilation and to investigate
the model biophysics and the bias between the model and the
observations.

TABLE I
GROWTH STAGES OF SWEET CORN DURING THE

MICROWEX-5 FROM [36]

In the next section, we briefly describe the MicroWEX-5
observations and the coupled SVAT-Vegetation-passive mi-
crowave model, the CH used for parameter sensitivity and the
EnKF algorithm.

II. EXPERIMENT, MODELS, AND ALGORITHMS

A. Fifth Microwave Water Energy Balance
Experiment (MicroWEX-5)

The MicroWEX-5 was conducted during a growing season
of sweet corn from Day of Year (DoY) 68 (March 9) to DoY
150 (May 30) in 2006, to monitor micrometeorological, soil,
and vegetation conditions as well as the horizontally polar-
ized microwave brightness temperatures at L-band [25]. The
experimental site is a 3.6 hectare (9 acre) field located at the
UF/IFAS Plant Science and Research Education Unit, in North
Central Florida (29.41 N, 82.18 W). The soils at the site are
lake fine sand, with 89.4% sand, 7.1% clay, and a bulk density
of 1.55 g/cm3. Corn was planted at a row spacing of 76 cm,
with a density of 8 plants/m2. Observations used in this study
include every 15-min measurements of VSM, wind speed at
1.8 m, upwelling and downwelling short and longwave radi-
ation, precipitation/irrigation, relative humidity, and air tem-
perature at 2.66 m. The soil moisture values were observed
at depths of 2, 4, 8, 16, 32, 64, and 100 cm, using Campbell
Scientific Water Content Reflectometers. Four tipping-bucket
rain gauges logged precipitation and irrigation at four locations
in the field. Table I shows the different growth stages of corn
and their associated vegetation characteristics observed during
MicroWEX-5. Observations of TB at 1.4 GHz were also
collected at 15-min intervals using the University of Florida
L-band Microwave Radiometer. The 3-dB bandwidth and
beamwidth of the radiometer were 20 MHz and 22.5◦, respec-
tively, and the noise figure and RF gain were 3.99 dB and 79 dB,
respectively.

B. Coupled LSP-DSSAT Model

The Land Surface Process (LSP) model [26] is an SVAT
model that simulates 1-D coupled energy and moisture
transport in soil and vegetation, and estimates energy and
moisture fluxes at the land surface and in the vadose zone.
The model has been rigorously tested [26], [27] and extended
to wheat-stubble [28] and brome-grass in the Great Plains,
prairie wetlands in Florida [29], and to tundra in the Arctic
[30]. The vegetation energy balance is calculated using [31]
for the water drainage from canopy, the bulk transfer approach
for the sensible heat flux from [32], and the latent heat flux
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TABLE II
PARAMETERS INCLUDED IN THE LSP-DSSAT MODEL [36]. THE VALUES FOR CANOPY PARAMETERS

WERE FROM [72], AND RANGES FOR SOIL PARAMETERS WERE FROM [73]

following [33]. The coupled energy and water balance in soil
is calculated from [34] and [35]. A block-centered finite-
difference scheme is employed to solve the coupled governing
equations at an adaptive time step (s/min) in response to the
forcings [36]. The LSP model has been coupled with a widely
used crop-growth model, viz Decision Support System for
Agrotechnology Transfer (DSSAT) that simulates daily crop
growth (biomass accumulation) and development (vegetative
and reproductive growth stages) for a variety of crops such
as corn, soybeans, wheat, and cotton [37] when forced with
meteorological conditions. The soil module in DSSAT simu-
lates soil water transport using the Bucket model (Manabe,
1969) and soil temperature as an empirical function of air
temperature and depth. The soil-plant-atmosphere module es-
timates evotranspiration (ET). CERES-Maize [38] is a part of
the crop growth submodule that simulates corn growth and
development. The model incorporates management such as ir-
rigation, fertilization, and pesticide applications. The calibrated
values of the six cultivar coefficients that describe growth and
development characteristics for different maize cultivars, are
given in Table II, as obtained from [36]. The DSSAT model has
been extensively tested in different hydroclimatic regions [37],
[39]–[47], including North-Central Florida [48]. In the coupled
LSP-DSSAT model, at the end of each day of simulation, the
LSP model provides the DSSAT model with estimates of soil
moisture and soil temperature profiles and ET and the DSSAT
model provides the LSP model with vegetation characteristics
such as vegetation water content (VWC), biomass, and plant
height and width that influence heat, moisture, and radiation
transfer at the land surface [36].

C. Microwave Brightness (MB) Model

The MB model is the widely used τ − ω model [49]. A
vegetated surface is modeled as a single isothermal layer of
vegetation with diffuse boundaries over a soil half-space [50].
The soil moisture and temperature profiles provided by the
LSP model and the leaf/ear biomass, VWC, and plant height
provided by the DSSAT model are used by the MB model
in simulating brightness temperature. Using a zeroth-order
radiative transfer approach, the total brightness temperature of
a terrain (TB) is the sum of contributions from soil (TBsoil,p),
vegetation (TBcanopy,p), and from sky (TBsky,p)

TBsoil,p=(1−rp)Teffexp

(
− τ

μ

)

TBcanopy,p=Tc

[
1−exp

(
− τ

μ

)]
(1−ω)

[
1+rpexp

(
− τ

μ

)]

TBsky,p=Tskyrpexp

(
−2τ

μ

)
(1)

where p is the polarization, rp is the reflectivity of the rough soil
surface, Teff is the effective radiating temperature of the soil,
μ = cosθ, where θ is the incidence angle, Tc is the physical
temperature of the isothermal canopy, ω is the single scattering
albedo, τ is the optical depth, and Tsky is the downwelling sky
brightness.

The θ was set to 50◦ in this study to match the incidence angle
for the MicroWEX-5 observations. Tsky was set to 5 K [49] and
rp was obtained by integrating the bistatic scattering coefficient
from the IEM model [51]. The soil dielectric properties were
obtained from the four-component model described in [52].
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The optical depth was calculated from the linear relationship
τ = b ∗ VWC [53], where b is a regression coefficient that
depends upon canopy, frequency, and polarization. This linear
dependency of optical depth on VWC has been confirmed by
[54], [55], with a range of b values for a single crop. In general,
the variation in b reduces for low frequencies, such as 0.1–0.3
for frequencies lower than 3 GHz [54].

D. Conditional Entropy

In this paper, we employ an information-theoretic measure
known as CH to identify the parameters most sensitive to TB .
Statistical measures such as correlation include only second-
order moments and may provide reduced information on
sensitivities under dynamic vegetation conditions. Information-
theoretic measures [56], such as CH, quantify the stochastic
structure of data beyond second-order statistics by embedding
information from the complete probability density function
(PDF). In an information-theoretic framework, a parameter is
said to be sensitive to TB or RZSM if it provides a good
separation among different classes of TB or RZSM, where
the classes represent different ranges of TB or RZSM values.
The CH metric offers a quantitative way of measuring this
separation [57]. The CH for a set of classes w given a particular
feature Fi is represented as CH(w|Fi) and is computed using

CH(w|Fi) = −
∑
Fi

p(Fi)
∑
w

p(w|Fi)log [p(w|Fi)]

=
∑
w,Fi

p(w,Fi)log
p(Fi)

p(w,Fi)
. (2)

Given a set of parameters F = F1, F2, . . . , Fm and a vector
of TB classes w, the set of parameters within F that are most
sensitive to TB is the set that provides the smallest value
for CH.

To estimate the PDFs, p(Fi) and p(w,Fi), in (2), a nonpara-
metric PDF estimation technique known as Parzen windows
[58] will be used. In this technique, symmetric functions,
known as kernels, are used to estimate the PDF of a random
variable based on a finite set of data samples. The Kernels
assign weights to each of the samples based upon their distance
from the point at which the PDF is estimated, with higher
weights being assigned to the samples that are closer to the
point. In this paper, a zero-mean, unity-variance Gaussian
function will be used as the kernel. With Gaussian kernels, the
weight decreases exponentially with the square of the distance,
rendering the distant points irrelevant.

Given n samples of the feature Fi (Fi,j , j = [1, 2, . . . , n]),
the probability of Fi at a point F k

i is represented as p(Fi = F k
i )

and computed using (3) where k = [1, 2, . . . ,M ] represents the
M discrete points at which the PDF is estimated

p
(
Fi = F k

i

)
=

1

n

n∑
j=1

1

h
ψ

(
F k
i − Fi,j

h

)
(3)

where ψ is the Gaussian kernel and h is a smoothing parameter,
which relates to the variance in ψ. The parameter h will be
determined based on Silverman’s rule, which is a standard rule-
of-thumb that is used in kernel-based estimation algorithms

[59], as given in (4). The PDF p(w,Fi) is a 2-D PDF that will
be computed at M2 points, similar to that of p(Fi)

h = 1.06min

[
σ,

IQR

1.34

]
n− 1

5 (4)

where σ and IQR are the standard deviation and inter-quartile
range, respectively, computed from the n samples.

E. Ensemble Kalman Filter

In the EnKF, a set of ensemble members representing state
vectors is propagated in parallel, such that each state vector
represents one realization of a nonlinear model. The state
equation for each ensemble member in the filter is [60]

xi−
t = f

(
xi+
t−1, u

i
t−1, θ

i+
t−1, t− 1

)
+ ηit−1 (5)

where f(·) is the nonlinear model, xi−
t is the state of the ith

ensemble member prior to the update at time t, xi+
t−1 is the

posterior state of the ith ensemble member at time t− 1, ui
t−1

represents the meteorological forcings and other inputs, θ+t−1

represents the model parameters, and ηit−1 is the model error.
In our study, the model physics are assumed to be perfect
(ηit−1 = 0).

The observation equation given in (6) relates the prior state
(xi−) to the observations (di) through the measurement opera-
tor h, perturbed by errors associated with the observations, ε, at
time t

dit = hxi−
t + εit (6)

where ε is the error associated to the observations and is
assumed to be Gaussian with zero mean and variance R in this
work.

The ensemble of state vectors xi and perturbed observations
di can be represented in matrix form as

A = {x1, x2, . . . , xN} (7)

D = {d1, d2, . . . , dN} (8)

where N is the number of ensemble members.
The posterior matrix of state vectors A+

t is computed as a
linear combination of the prior estimate A−

t and the observation
vector Dt weighed by the Kalman gain Kt

A+
t = A−

t +Kt

(
Dt −HA−

t

)
(9)

where H is the operator relating the ensemble of perturbated
observations to the ensemble of states.

The Kalman gain can be calculated as [61]

K = PxH
T (HPxH

T +Re)
−1

(10)

where Px represents the prior state covariance matrix, and Re

is the covariance matrix of the observation errors.

III. METHODOLOGY

In this section, we describe the LSP-DSSAT-MB simulations
and the implementation of the EnKF algorithm for our study.
The model integration and assimilation set up is shown in
Fig. 1.
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Fig. 1. Model integration and assimilation setup.

A. LSP-DSSAT-MB Simulations

Model simulations using the LSP-DSSAT-MB model were
conducted from planting on DoY 68, to harvest on DoY 142, in
2006 during MicroWEX-5. Micrometeorological forcings and
vegetation properties for the simulations were obtained from
the MicroWEX-5 and DSSAT, respectively. Initial moisture
and temperature conditions were obtained from the first values
observed by the soil moisture and temperature sensors on
DoY 72, three days after planting. Initializations at depths
where observations were not available including the lower
boundary were set via interpolation. Initialization errors in soil
moisture and temperature profiles were assumed to be zero
because the soil was heavily irrigated after planting leading
to near-saturated conditions, when initialization uncertainties
have negligible impacts on soil moisture and soil temperature
estimates, similar to [62]. At the field site, the first 1.7 m of
soil was primarily sandy, with volumetric sand fraction of 0.894
and the second layer (1.7–2.7 m), with the fraction of 0.405. In
the LSP model, the soil was discretized into 35 computational
blocks in the two layers with different constitutive properties.
The blocks increased in thickness exponentially, with four
blocks in the top 5 cm of the soil. The LSP model includes 16
parameters as shown in Table II. The constitutive properties of
the first layer of the soil were estimated during assimilation,
as explained in Section III-C. The second layer (1.7–2.7 m)
of the soil was assumed to have known constitutive properties,
obtained from [36], as shown in Table II.

B. Sensitivity of Parameters to RZSM and TB

As mentioned before, the augmented state vector technique
[8], [21] is applied to simultaneously update states and parame-
ters using EnKF in this study. To determine the parameters most
sensitive to TB , the correlation coefficients (CC) and CH are
computed between the parameters and open loop simulations
of RZSM and TB over the entire growing season. The four soil
parameters in the LSP model-porosity (φ), air entry pressure
(ψ0), pore-size index (λ), and saturated hydraulic conductivity
(Ksat) and additional four parameters in the MB model: RMS
height (r), correlation length (l), the vegetation parameter, b,

TABLE III
PARAMETERS IN THE LSP AND MB MODEL CONSIDERED FOR UPDATE

DURING ASSIMILATION. THE RANGES OF PARAMETERS IN

THE MB MODEL WERE OBTAINED FROM [51], [64]

and the scattering coefficient (ω) are considered in this study.
The LSP parameters in Table III were found to be the most
influential for RZSM estimation, based upon time-dependent
correlations of the RZSM estimates to the 16 parameters in
the LSP model [8], [63]. MB model parameters related to soil
roughness and canopy were also used in this study. The soil
roughness is the most influential in estimating TB contribution
from the soil. Past studies have investigated multiple parame-
terizations to describe the soil roughness. While microwave sig-
natures were found to be sensitive to changes in r only in [64],
another study [65] proposed the inclusion of a third parameter
in addition to r and l. In this paper, we included both r and l in
the state vector and assumed them to independently describe
the soil surface. The b parameter is the only canopy-related
parameter in the MB model, and was included in the state
vector. All the parameters are randomly generated from uniform
distributions with literature-based upper and lower bounds (see
Table III). The use of a uniform distribution avoids the gen-
eration of negative parameters and assumes that all values are
equally likely. In computing the CH, the eight parameters in
Table III represent the features F1, F2, . . . , F8 and the PDFs
p(Fi) and p(w,Fi) are estimated considering M = 8 using
Parzen windows. The entropy of a PDF is maximum when the
PDF is uniformly distributed, which in this case corresponds to
p(w = wk|Fi) = 1/8 for k = 1, 2, . . . , 8. Therefore, the largest
CH value that can be obtained in separating eight classes of TB

or RZSM is 2.07 nats or ln(8). A nat is a logarithmic unit of
information based on natural logarithms and powers of e.

C. Implementation of EnKF

In this paper, the nonlinear propagator f() in (5) represents
the coupled LSP-DSSAT-MB model; x is the state vector
consisting near-surface VSM along with TB estimated by the
MB model; ut is the vector of meteorological forcings at time t,
and θ are the model parameters in the LSP-DSSAT-MB model.
The augmented state vector xi [(11)] includes soil moisture
at depths of 2 and 4 cm, TB , and the imperfectly known
parameters describing the first layer of the soil and those in the
MB model (see Table III). The impact of parameters on RZSM
and TB are time-varying due to changes in the soil surface from
growing vegetation. Including parameters in the state vector is
an efficient approach to track their temporal behavior, provided
they are sensitive to RZSM and TB . RZSM is not included in
the state vector as a lumped variable because the SVAT model
requires VSMs at different nodes and would necessitate the
use of correlation statistics to allocate the differences in the
posterior and the prior RZSM values to changes at different
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Fig. 2. Observations of TB and VSM at 0–5 cm from the MicroWEX-5.

nodes in the soil. This seems less physically realistic than
allowing the LSP model to use its embedded biophysics to
propagate changes in the near surface soil moisture to lower
nodes to ensure mass and energy balance over the next time step
when only surface soil moisture is in the state vector. Including
RZSM in the state vector is also not physically meaningful
because TB is only sensitive to the top few centimeters of
the soil. Inclusion of VSM at all the 15 nodes encompassing
the root zone in the state vector is also not desirable because the
state vector becomes large leading to potential instabilities in
the EnKF and has further been found to offer only negligible
improvements to RZSM estimates [8]. The ith ensemble mem-
ber is therefore expressed as

xi =

⎡
⎢⎣
V SMi2cm

V SMi4cm

TBi

θi

⎤
⎥⎦ . (11)

Two sets of experiments assimilating synthetic observations
of TB are performed with different parameter update scenarios.
The first scenario involves the estimation of the states and all
the unknown parameters listed in Table III and the second
scenario involves the estimation of states and the most sensitive
parameters obtained from the sensitivity studies in Section II-D.
Uncertainties in the parameters that are not updated during
asimilation, are still included in the experiments. The experi-
ment using field observations of TB from the MicroWEX-5 is
conducted for the second scenario only.

The RZSM is calculated from the LSP-DSSAT model using
the following equation:

RZSM =

∑m
i=1 V SMiΔzi∑m

i=1 Δzi
(12)

where m indicates the total number of nodes (blocks) within
the root zone (0–1 m), Δzi the thickness of the ith node, and
V SMi the VSM at ith node.

One hundred ensemble members (N = 100) were chosen for
assimilation to achieve reliable estimates [66]. The synthetic
truth was obtained from one of the realizations from an open-
loop simulation of the LSP-DSSAT-MB model using perturbed
precipitation forcings and perturbed parameters. Synthetic ob-

Fig. 3. (a) Conditional entropy of RZSM and (b) correlation coefficients
between RZSM and the four LSP parameters over the growing season. φ, λ,
ψ0, and Ksat represent soil porosity, pore-size index, air-entry pressure, and
saturated hydraulic conductivity, respectively.

servations were obtained by adding a Gaussian error to the
truth. Horizontally-polarized TB observations were assimilated
into the LSP-DSSAT-MB model every three days. The assimi-
lation time was chosen to be at 6 A.M. EST, corresponding to
the availability of current and near future remotely-sensed mi-
crowave observations [4], [5]. The truth was not included in the
ensemble of 100 members during the assimilation experiments.
The field observations were obtained from the MicroWEX-5
experiment (see Fig. 2), described in Section II-A and were
assumed to be unbiased [67]. The RMSE between the mean
estimates of RZSM and the truth along with the time-averaged
standard deviations of the mean estimates (i.e., the average
standard deviation: ASD) were computed to quantify algorithm
performance. The RMS differences (RMSD) between the mean
estimates and field observations during MicroWEX-5 and the
ASD was used to quantify the filter performance. While the
RMSE/RMSD is a metric of accuracy, the ASD is a metric of
uncertainty and can be used as an error metric of the RMSE.
The maximum expected error in the estimates is therefore
calculated as the cumulative effect of the RMSE/RMSD and
ASD values. An optimal estimate of RZSM would have low
values of both the RMSE/RMSD and ASD.

RMSE(or)RMSD

=

√√√√ 1

Nt

Nt∑
t=1

(
RZSMmean

t −RZSM
truth(or)obs
t

)2

(13)

ASD

=
1

Nt

Nt∑
t=1

1

100

100∑
i=1

(
RZSM i

t −RZSMmean
t

)2
(14)

where Nt is the number of RZSM estimates over time,
RZSMmean

t is the mean RZSM at time t computed from the
N ensemble members, and RZSM truth

t is the true value of
the RZSM at time t for synthetic experiments and RZSMobs

t

is the observed mean value of the RZSM at time t during
MicroWEX-5.

D. Uncertainties in Forcings and Observations

In this paper, the errors in both synthetic and MicroWEX-5
observations were assumed Gaussian with zero mean. The stan-
dard deviation of the errors in TB was 3 K. Among the forcings,
a Gaussian observation error with standard deviation equal
to 12% of the observed value of precipitation/irrigation was
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Fig. 4. (a) and (c) Conditional entropy of TB and (b) and (d) correlation
coefficients between TB and the eight parameters in the LSP and MB models
over the growing season. φ, λ, ψ0, Ksat, r, l, ω, and b represent soil porosity,
pore-size index, air-entry pressure, saturated hydraulic conductivity, root mean
square height, correlation length, scattering coefficient, and vegetation parame-
ter, respectively.

introduced during events [68], [69]. No errors were introduced
in the absence of the events.

IV. RESULTS AND DISCUSSION

A. Parameter Sensitivity Using Conditional Entropy

Parameters that are sensitive to RZSM and TB should display
low CH values and high correlations (CC). The CH and CC
obtained for different parameters are shown in Figs. 3 and 4
for RZSM and TB , respectively. Both CH and CC predict φ
to be the most sensitive parameter to RZSM [see Fig. 3(a)
and (b)]. A season-average CH of 1.2 nats and correlation of
0.75 are obtained for φ. The Ksat and ψ0 are found to be the
least sensitive to RZSM by both CH and CC. While λ was
found to be sensitive during the early stage, with average CH
and CC values of 1.4 nats and −0.5, respectively, the sensitiv-
ity decreased as the season progressed, with values reaching
1.75 nats and −0.2, respectively.

The CH and CC obtained between the soil parameters and
TB are shown in Fig. 4(a) and (b), and those obtained between
the MB-model parameters and TB are shown in Fig. 4(c) and
(d). Among the soil parameters, λ was the most sensitive to TB

during the early and midstages with average CH and CC values
of 1.35 nats and 0.2, respectively. Although φ was observed
as the most sensitive soil parameter toward the end of the
reproductive stage [see Fig. 4(a)], it obtained a relatively high
CH value of 1.57 nats at the end of the season, indicating the
low sensitivities of soil parameters to TB during full vegetation.
Both the CH and CC predict r and l to be the most sensitive
MB-model parameters during the early and midseasons, with
average CH values in the range of 1.25–1.30 nats and CC values
in the range of 0.45–0.50. In the reproductive stage, b was found
to be the most sensitive parameter with average CH and CC

Fig. 5. Absolute errors and standard deviations between the synthetic truth
and estimates of (a) and (b) RZSM and (c) and (d) TB , respectively when
synthetic observations of TB were assimilated. S, S-P, and S-sP represents
state-only, state-parameter, and state-sensitive parameter, respectively.

TABLE IV
ROOT MEAN SQUARE ERRORS (RMSE) AND AVERAGE STANDARD

DEVIATIONS (ASD) OF (A) RZSM (m3/m3) AND (B) TB (K) AVERAGED

OVER THE WHOLE SEASON AND OVER DIFFERENT GROWTH STAGES

OF CORN WHEN ASSIMILATING SYNTHETIC OBSERVATIONS OF TB .
THE S-P REPRESENTS THE UPDATE OF STATES AND ALL EIGHT

PARAMETERS IN TABLE III. THE S-SP REPRESENTS THE

UPDATE OF STATES AND PARAMETERS λ, φ, r, l, AND b

values of 1.05 nats and 0.85, respectively. Parameter ω was
found to be insensitive to TB by both CH and CC.

Based upon the CH and CC values obtained over the entire
season, λ, φ, r, l, and b are found to be the most sensitive
parameters and should be chosen for update during TB as-
similation. In general, during the early and midstages, lower
CC values are obtained for TB than for RZSM, while the CH
values remained low at 1.2 nats for both TB and RZSM. Higher
sensitivities observed in the CH values for TB are probably due
to the additional higher-order information extracted by CH than
CC from the nonlinear relationships between TB and the model
parameters over the growing season.

B. Identical Twin Synthetic Experiment

1) Estimation of States and Parameters: In the synthetic
experiment, where most of the uncertainty and bias is
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TABLE V
MEANS AND STANDARD DEVIATIONS (STD. DEV.) OF THE EIGHT PARAMETERS IN THE LSP AND MB MODELS

AT THE END OF THE SEASON WHEN SYNTHETIC OBSERVATIONS OF TBWERE ASSIMILATED

Fig. 6. Posterior distributions of pore-size index (λ), saturated hydraulic conductivity (Ksat), porosity (φ), air-entry pressure (ψ0), RMS height (r), correlation
length (l), single-scattering albedo (ω), and regression parameter (b) during the growing season for state and parameter updates when synthetic observations of
TB were assimilated. The Square and triangle markers represent the true and mean values, respectively. Grayscale bar represents the probability values of the
parameters. Darker shades represent higher probabilities compared to lighter shades.

embedded in the parameters, significant improvements to
RZSM estimates are obtained when parameters are updated
along with the states compared to state-only estimation (see
Fig. 5). Table IV(A) shows the improvements to RZSM esti-
mates obtained when all the eight parameters in Table III are
updated along with states when synthetic observations of TB

are assimilated. Fig. 5(a) and (b) show the time series of the
improvement and its standard deviations during assimilation.
The RMSEs of the RZSM estimates are reduced by 71.5%
compared to the open loop estimates and the ASDs obtained
over the entire season are around 0.014 m3/m3 compared
to 0.022 m3/m3 obtained for the open loop [Table IV(A)].
Fig. 5(c) shows the absolute errors in the mean estimates of
TB obtained using EnKF. Model uncertainty decreases in the
reproductive stage starting on DoY 116 because TBcanopy is
the primary component during this stage and includes only the
b parameter that has small uncertainties, resulting in smaller
errors. RMSEs and ASD in the open loop estimate themselves
reduce in the reproductive stage as seen in Fig. 5(c) and (d).
The mean estimates of TB using the EnKF algorithm are closer
to the truth over the entire season compared to open loop esti-
mates. The RMSEs and ASDs of TB estimates are reduced by
10.8 K or 70.7% over open loop estimates [see Table IV(B)].
The ASD obtained over the growing season is approximately
4.2 K compared to 15.5 K for the open loop, a reduction of
over 73%.

Since model physics is assumed perfectly known [i.e., η = 0
in (5)] in the synthetic experiment, parameters that are sensitive
to TB are expected to converge to the true values. The means
and SDs of the posterior estimates of the parameters are listed

in Table V and the posterior PDFs are shown in Fig. 6. The
mean estimates of the most sensitive soil parameters, namely λ
and φ, converged with a difference of 33% and 11% from the
true value, respectively. Parameters ψ0 and Ksat are the least
sensitive parameters and do not converge throughout the season
as seen in Fig. 6. Amongst the MB model parameters, while r
and l converged during early and midstages as seen in Fig. 6, b
converged to the true value of 0.17 with a standard deviation of
0.01 during the reproductive stage (see Table V). These results
also support the sensitivity analyses presented in Section IV-A
using the CH and CC.

2) Estimation of States and the Most Sensitive Parameters:
As inferred earlier in Section IV-A, parameters φ, λ, r, l, and b
were selected as the most sensitive parameters to TB . When
these parameters are estimated along with the states, similar
reductions in RMSEs of RZSM estimates are obtained as those
when all the eight parameters are estimated [see Table IV(A)].
The RMSEs in the RZSM estimates are reduced by 57%
compared to the open loop estimates when TB is assimilated,
slightly lower to that obtained when all eight parameters were
updated. The RMSEs in the TB estimates are reduced by 10.7 K
or 70% compared to the open loop estimates with an ASD of
4.6 K. The only difference in the TB estimates between updat-
ing all the eight parameters and λ, φ, r, c, and b are during the
long dry-down periods. During such dry-down periods, for ex-
ample DoY 85–88, parameter ψ0 that displays high sensitivity
to TB [see Fig. 4(a)] is not updated leading to an increase in
RMSE values as seen in Fig. 5(c). The posterior PDFs of the
eight parameters are shown in Fig. 7.
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Fig. 7. Posterior distributions of pore-size index (λ), saturated hydraulic conductivity (Ksat), porosity (φ), air-entry pressure (ψ0), RMS height (r), correlation
length (l), single-scattering albedo (ω), and regression parameter (b) during the growing season for state and sensitive parameter updates when synthetic
observations of TB were assimilated. The Square and triangle markers represent the true and mean values, respectively. Grayscale bar represents the probability
values of the parameters. Darker shades represent higher probabilities compared to lighter shades.

Fig. 8. Contributions from soil (TBsoil) and vegetation (TBcanopy) toward
total TB during a growing season of corn.

C. Assimilation Using MicroWEX-5 Observations

As mentioned earlier, additional bias may be introduced
when field observations are assimilated and simultaneous state-
parameter estimation can be used to address such bias in the
model. Since the contributions from TBsoil and TBcanopy in
estimating total TB vary as the season progresses, updating pa-
rameters that are highly sensitive to TB during each of the three
growth stages of corn is essential for the accurate estimation of
RZSM. Fig. 8 shows the two components over the entire season
for an open loop realization of the LSP-DSSAT-MB model.
Based upon the senstivity analyzes, parameters λ, r, l, and b are
chosen for update over all three growth stages (see Table I), ψ0

during the early season, and φ during the mid- and reproductive
seasons. Parameter ψ0 shows high sensitivity during long dry-
down periods under bare-soil conditions, as seen in Fig. 4(a),
and is updated during the early season. Although the contribu-
tion from TBsoil decreases during the mid- and reproductive
stages, soil parameter φ shows increased sensitivity to RZSM
and TB as seen in Figs. 3(a) and (b) and 4(b), respectively.
Parameters r and l that describe the soil roughness influence the
estimation of TB contributed from soil which still accounts to
approximately one-third of overall TB during the reproductive
stage (see Fig. 8) and hence retained throughout the season.

Table VI shows the improvements to RZSM and TB es-
timates obtained when MicroWEX-5 observations of TB are
assimilated. The absolute errors between the RZSM estimates
and the observations and the ASDs in the estimates are shown
in Fig. 9(a) and (b). Fig. 9(c) and (d) show the absolute errors in
the estimates of TB and the standard deviations during assim-

ilation. The RMSDs in TB and RZSM estimates are reduced
by 5.4 K or 22.5% and 15.4%, respectively, compared to open
loop estimates over the entire season. Assimilation also reduces
uncertainty in the estimates of TB and RZSM with ASDs of
7.6 K and 0.014 m3/m3, respectively, compared to ASDs of
14.8 K and 0.024 m3/m3 obtained in the open loop. The
RMSEs obtained in this study are moderately better than those
obtained in previous studies. RMSEs of 0.023 m3/m3 and
0.04 m3/m3 in RZSM estimates were reported in [11] and
[7], respectively, when real observations of TB were assimi-
lated under static vegetation conditions. In [70], an RMSE of
0.03 m3/m3 and ASD of 0.02 m3/m3 in RZSM estimates was
reported when near-surface soil moisture was assimilated under
dynamic vegetation conditions similar to that in this study.
While only moderate improvements in RMSDs are observed
over the entire season, variations in performance can be ob-
served within the season.

During the early stage (DoY 76–95), the RMSDs and ASD
in the RZSM estimates are reduced by 33.3% and 13.3% over
open loop estimates. The RMSDs and ASD in TB estimates
are reduced by 15.1% and 40.4% over open loop estimates [see
Fig. 9(a) and (b)]. Although the model estimates from assimila-
tion are closer to the MicroWEX-5 observations than the open
loop estimates, reduced improvements are observed during and
immediately following precipitation/irrigation events. The IEM
model overestimates TB during precipitation/irrigation events
and underestimates TB during initial dry-down periods leading
to a smaller dynamic range in the estimates of TB . Similar to
TB estimates, maximum errors in RZSM estimates are also
observed immediately following such events. If the RMSDs
in TB estimates are computed over times excluding 12 h
following precipitation/irrigation events, a reduction of 22.2%
is obtained with an ASD of 7.8 K. The reduced performance
during precipitation events is due to the suboptimal estimates
of dielectric constant in the MB model. As mentioned earlier,
the four-component model [71] was used to compute the di-
electric constant in this study. Errors in dielectric constant arise
during precipitation/irrigation events because of inaccuracies
in the estimates of the four components, namely soil solids,
air, free water, and bound water. In such cases, updating only
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TABLE VI
ROOT MEAN SQUARE DIFFERENCES (RMSD) AND AVERAGE STANDARD DEVIATIONS (ASD) OF TB (K) AND RZSM (m3/m3) AVERAGED OVER

THE ENTIRE SEASON AND OVER DIFFERENT GROWTH STAGES OF CORN WHEN MICROWEX-5 OBSERVATIONS OF TB WERE ASSIMILATED

Fig. 9. Absolute errors between the observations and estimates of (a) RZSM and (c) TB and the SD in the estimates of (c) RZSM and (d) TB when MicroWEX-5
observations of TB were assimilated.

Fig. 10. Posterior distributions of (a) Porosity (φ), pore-size index (λ), and air-entry pressure (ψ0) and (b) RMS height (r), correlation length (l), and b
parameter when MicroWEX-5 observations of TB were assimilated. The triangle markers represent the mean values. Grayscale bar represents the probability
values of the parameters. Darker shades represent higher probabilities compared to lighter shades.

the soil roughness parameters, r and l, immediately follow-
ing precipitation/irrigation events may be insufficient for the
accurate estimation of TB . When assimilation is performed near
a precipitaion event (DoY 88), although the EnKF improves TB

estimates at the time of assimilation by significantly changing

the values of r and l as shown in Fig. 10(b), the model estimates
move farther away from the truth immediately after assimila-
tion. Parameter ψ0 is most sensitive to TB from DoY 85–88
and displays maximum convergence over these times during
assimilation, as seen in Fig. 10(a).
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During the midstage (DoY 96–115), only a moderate re-
duction in RMSD of 4.8% is observed in RZSM estimates
compared to the open loop (see Table VI). Although the ASD
in TB estimates is reduced from 18 K to 5.7 K, reductions
of RMSDs in TB estimates are not observed. The reduced
performance is attributed to complexities in estimating TB

by a highly dynamic vegetation during this stage. The con-
tribution from the canopy gradually increases, while the con-
tribution from the soil decreases with increasing vegetation
(see Fig. 8). The mean estimates of the b parameter, used for
computing TBcanopy also increase over this stage as seen in
Fig. 10(b), but are insufficient to capture the dynamic varia-
tions in TB . The senstivities of r and l to TB decrease, as
expected, and are indicated by their reduced convergence in
Fig. 10(b).

During the reproductive stage (DoY 116–142), reduction in
RMSD of 16.7% is observed in RZSM estimates compared to
the open loop. Maximum improvements, in terms of RMSD
reductions in TB estimates are observed. The RMSDs in TB

estimates are reduced by 11.4 K or 41.2% compared to the
open loop and the ASD is reduced by 4.2 K. The open loop
estimates of TB in the reproductive stage indicate the presence
of a model bias of 12 K, as shown in Fig. 9(c). Updating
the b parameter helps remove most of this bias. Although
contribution from the canopy is the most significant during the
reproductive stage, the soil contribution is approximately one-
third of the total predicted TB . Due to the soil contribution,
reduced improvements in TB estimates are observed following
precipitation/irrigation events [see Fig. 9(c)] due to suboptimal
VSM estimated by the LSP model following such events similar
to that observed in the early stage. However, in comparison to
the estimates of TB obtained during end of dry-downs in the
early stage, estimates of TB during the reproductive stage are
much closer to the observations due to the reduced contribution
of soil to overall TB . The estimates of TB also move farther
away from the observations after DoY 130 when there has been
significant ear growth (specific weight of ears on DoY 131
were observed at 1 kg/m2). The deviation of TB estimates
from the observation beyond DoY 131 is likely because the
optical depth in (1) is computed based on a simplistic linear
equation parameterized by b. Such a simplistic equation is
inadequate in assimilation scenarios to capture the complexities
in TB caused by ear formation. Significant RMSD reductions in
RZSM estimates of 61.2% compared to open loop estimates are
obtained prior to Doy 131 as seen in Fig. 9(a).

V. SUMMARY AND CONCLUSION

In this paper, L-band microwave observations were
assimilated using the EnKF to improve RZSM estimates from a
coupled SVAT-vegetation model linked to a forward microwave
model under dynamic land surface conditions. Simultaneous
state-parameter updates were performed by assimilating both
synthetic and field observations during a growing season of
sweet corn.

The sensitivities of parameters to the states were investigated
by using the information-theoretic measure of CH and the
traditional second-order metric of CC. While both CH and

CC offered similar sensitivities for parameters with respect to
RZSM, the CH metric provided better separation amongst the
parameters in terms of their sensitivity to TB than CC. This
is potentially due to the additional higher order information
extracted by CH than CC from the nonlinear relationships be-
tween TB and the parameters over the growing season. Among
the soil parameters, λ was the most sensitive to TB during
the early and midseasons, while porosity φ was more sensitive
in the reproductive stage. In the microwave model, the soil
roughness parameters, r and l were the most sensitive during
the early and midseasons, while the vegetation parameter, b,
was the most sensitive during the reproductive stage.

Assimilation offered significant reductions in RMSE/RMSD
and ASD in the synthetic case and marginal improvements
in the MicroWEX-5 case compared to the open loop. In
the synthetic case, assimilation provided RMSE reductions of
70% compared to the open loop estimates. Low RMSEs of
0.005 m3/m3 indicate the absence of model bias in estimating
RZSM by directly assimilating TB into the LSP-DSSAT-MB
model as against retrieving soil moisture from observations of
TB and then assimilating the retrieved soil moisture into the
LSP model. When the most sensitive parameters were estimated
along with the states, similar reductions in RMSEs of RZSM
estimates were obtained as those when all the eight parameters
were estimated. Identifying the most sensitive parameters and
estimating them during assimilation can provide similar im-
provements to RZSM estimates, while reducing the occurrence
of equifinality and computational complexities.

In contrast to the synthetic case, significant differences in
RZSM estimates were observed between different stages of
corn growth when field observations of TB were assimilated.
Maximum RMSD reductions in RZSM estimates of 33.3%
were observed compared to open loop estimates in the
early stages, while reduced improvements of 4.8% and
16.7% were observed in the mid- and reproductive stages,
respectively. Maximum errors in TB estimates in the early
season were observed during and immediately following
precipitation/irrigation events. The IEM model overestimates
TB during precipitation/irrigation events and underestimates
TB during initial dry-down periods leading to a smaller
dynamic range in the estimates of TB , particularly under
baresoil conditions. While the optimization of soil roughness
parameters through assimilation reduces the error, improved
estimation of emissivity these periods is required for further
improvements in the estimation of TB . Significant errors in TB

estimates were observed during the midstage of corn growth
and after ear formation. The linear vegetation model used for
estimating canopy opacity did not capture the complexities in
TB , particularly during high dynamic growth and ear formation.
Since the canopy component contributing to overall TB is
primarily driven by the distribution of moisture in the canopy,
a canopy opacity model that is based upon vertical profiles
of moisture content within the crop will improve estimates of
TB during the mid- and reproductive stages of crop growth.
In addition, estimating both soil and vegetation parameters in
the coupled LSP-DSSAT model may result in better growth
and development of the vegetation, further improving the TB

estimates.
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