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In this study, we implement Particle Filter (PF)-based assimilation algorithms to improve root-zone soil
moisture (RZSM) estimates from a coupled SVAT-vegetation model during a growing season of sweet
corn in North Central Florida. The results from four different PF algorithms were compared with those
from the Ensemble Kalman Filter (EnKF) when near-surface soil moisture was assimilated every 3 days
using both synthetic and field observations. In the synthetic case, the PF algorithm with the best perfor-
mance used residual resampling of the states and obtained resampled parameters from a uniform distri-
bution and provided reductions of 76% in root mean square error (RMSE) over the openloop estimates.
The EnKF provided the RZSM and parameter estimates that were closer to the truth than the PF with
an 84% reduction in RMSE. When field observations were assimilated, the PF algorithm that maintained
maximum parameter diversity offered the largest reduction of 16% in root mean square difference
(RMSD) over the openloop estimates. Minimal differences were observed in the overall performance of
the EnKF and PF using field observations since errors in model physics affected both the filters in a similar
manner, with maximum reductions in RMSD compared to the openloop during the mid and reproductive
stages.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Root-zone soil moisture (RZSM) is an important hydrologic
state variable that governs moisture and energy fluxes at the
land–atmospheric interface. Accurate knowledge of RZSM is essen-
tial for near-term climate predictions, hydrologic and agricultural
research [24], and for effective water resources management. Typ-
ically, Soil Vegetation Atmosphere Transfer (SVAT)-vegetation
growth models simulate energy and moisture transport in soil
and vegetation, and estimate these fluxes at the land surface and
in the root-zone over a growing season [7,40]. However, these cou-
pled models exhibit large uncertainties in RZSM estimates due to
errors in conceptualization, computation, initialization, forcings,
and model parameters. Such uncertainties can be significantly re-
duced by assimilating in situ and/or remotely sensed observations
of soil moisture [41,39,46,23]. Ensemble-based techniques such as
the Ensemble Kalman Filter (EnKF) [17] and the Particle Filter (PF)
[20] have been used for data assimilation in hydrology.

Both the EnKF and the PF techniques involve representing states
and parameter distributions as ensembles or set of particles and
are particularly suitable for estimating hydrologic states whose
ll rights reserved.
evolution over time are described by non-linear models. However,
the EnKF uses innovations to update the prior states and parame-
ters, while the PF uses the innovations to assign posterior weights
to resample prior states and parameters. The EnKF also uses only
second-order statistics for updating the states and parameters,
while the PF utilizes the entire probability density function (PDF)
of the states given the observations in computing the posterior
weights, employing a Bayesian approach. Thus, the PF algorithms
are expected to provide estimates closer to the observations than
the EnKF when non-Gaussian distributions are involved or
non-linear relationships exist between the estimated state and ob-
served data. The PFs also require larger number of particles than
the EnKF-based algorithms because of the need to estimate the en-
tire PDF and are computationally more intensive. However, recent
advances in high-performance computing allow further investiga-
tions into the implementation of different PF-based algorithms.

Significant research has been conducted on EnKF-based assimi-
lation for RZSM estimation [42,46,12,37]. However, only a few
studies have been performed using PF [38,45]. Also, only few stud-
ies have been conducted that compare the two techniques
[54,52,23] for hydrology applications. Weerts and de Vries [52]
compared the performance of the two techniques for rainfall-run-
off estimation using synthetic and field observations and found
that the EnKF provided discharge estimates closer to the truth than
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the PF when field observations were assimilated. For studies in
RZSM, Zhou et al. [54] found the EnKF to perform better than the
PF, while Han and Li [23] found that both the EnKF and PF offered
similar performances. Both the studies assimilated empirically-de-
rived near-surface soil moisture from remotely sensed microwave
observations, where the physical model is assumed to capture the
biophysics perfectly, typical for synthetic studies. However, for
field studies, additional errors may be introduced due to imperfect
model physics and if the error distributions do not represent the
actual errors (typically not known) in the model physics, the
weights computed in the PF generate estimates that are further
from the truth. Since the PF is more sensitive to model errors than
the EnKF [52], studies comparing the performance of the EnKF and
the PF using both synthetic and field observations are necessary to
understand the impact of uncertainties in model biophysics,
particularly under dynamic vegetation conditions.

The PF-based assimilations typically include resampling algo-
rithms to regenerate values of states and parameters from the
posterior distributions. Resampling is desired because PFs imple-
mented without it, such as the Sequential Importance Sampling
(SIS), can potentially lead to severe depletion of samples resulting
in sample impoverishment [16]. Studies that used PF for RZSM esti-
mation have incorporated the Sampling Importance Resampling
(SIR) [38,23] algorithm. However, Liu and Chen [33] proposed
residual resampling (RR) as an improvement to the SIR algorithm
as it is computationally more efficient and provides lower variance
of the posterior estimates. Weerts and El Serafy [52] compared the
SIR and RR algorithms in rainfall-runoff modeling and found that
the RR algorithm offered lower RMSEs. To date, the RR algorithm
has not been applied in RZSM studies.

As mentioned earlier, for synthetic studies, the model error is
assumed to be zero. However, when field observations are assimi-
lated, additional bias may be introduced, particularly under dy-
namic land-surface conditions. Simultaneous estimation of
parameters with states [9] allows for addressing bias in the model
[14]. Applying the SIR or the RR algorithm without parameter per-
turbation may lead to repeated resampling of a few highly likely
parameters resulting in sample impoverishment and inaccurate
RZSM predictions after several updates. Hence, the resampling
algorithms in PFs should be augmented by techniques that allow
parameter values to maintain parameter diversity to obtain accu-
rate estimates of RZSM in such cases. Moradkhani et al. [39] used
a random walk model to perturb parameter estimates and main-
tain diversity. Because accurate estimation of model parameters
play a significant role in accurate estimation of RZSM, an analyses
of the impact of different parameter resampling algorithms on
RZSM estimates is needed.

According to the hypothesis of equifinality [2], estimating states
and parameters from observations related to RZSM imposes an
ill-posed problem, wherein multiple parameter combinations
may offer similar RZSM estimates. Both the EnKF and the PF (with
resampling) narrow the PDF of parameters during assimilation. In
this study, a comparison using parameter values estimated by dif-
ferent resampling methods within PF, including an algorithm with
no resampling, is performed to investigate equifinality in RZSM
estimation. The PF algorithm implemented without resampling
would resemble the Generalized Likelihood Uncertainty Estima-
tion (GLUE) method which has been used to study equifinality [2].

The goal of this study is to understand the impact of different
parameter resampling algorithms in PF on the RZSM estimates
while simultaneously updating states and parameters under dy-
namic vegetation conditions. A coupled SVAT-vegetation model is
used to estimate RZSM during a growing season of sweet corn in
North Central Florida. The estimates from the PF using four differ-
ent algorithms are compared with those from the EnKF when syn-
thetic and field-based observations of near-surface (0–5 cm) soil
moisture are assimilated every 3 days. The four algorithms include,
a PF without resampling or memory (PF-NRNM), a PF implemented
using the RR algorithm (PF-RR), and PFs implemented using the RR
algorithm with Gaussian (RR2) and uniform (RR3) parameter per-
turbations. Convergence of the RZSM estimates are investigated
using two PF algorithms, one that includes resampling and the
other that does not, to determine the number of particles needed
in the PF for our application. Parameter convergence and root
mean square errors (RMSE) in RZSM estimates are analyzed over
the whole season and also during different growth stages to under-
stand seasonal differences in algorithm performance.

In the next section, we briefly describe the field observations,
the coupled SVAT-Vegetation model, and the PF and the EnKF algo-
rithms used in this study.
2. Experiment, model, and assimilation

2.1. MicroWEX-2

The Second Microwave, Water and Energy Balance Experiment
(MicroWEX-2) was conducted in North Central Florida (29.41 N,
82.18 W) during a growing season of sweet corn from Day of Year
(DoY) 78 (March 18) to DoY 154 (June 2) in 2004 [28]. The exper-
imental site was 3.6 h (9 acre). The soils at the site were primarily
sand (89%) and the crop was heavily irrigated. During the MicroW-
EX-2, observations were conducted for soil moisture and tempera-
ture at depths of 2, 4, 8, 32, 64, and 100 cm, every 15 min along
with observations of up and downwelling solar and longwave radi-
ation, air temperature, relative humidity, precipitation, and irriga-
tion. Judge et al. [28] provides details of observations conducted
during MicroWEX-2 including microwave, soil, and vegetation
observations. Table 1 shows the different growth stages of corn
and their associated vegetation characteristics.
2.2. LSP-DSSAT model

The SVAT model used in this study is the Land Surface process
(LSP) model [30]. It simulates 1-d coupled energy and moisture
transport in soil and vegetation using a diffusion type equation,
and estimates energy and moisture fluxes at the land surface and
in the root zone. The model is forced with micrometeorological
parameters such as air temperature, relative humidity, downwel-
ling solar and longwave radiation, irrigation/precipitation, and
windspeed. The model has been rigorously tested [27] and ex-
tended to wheat-stubble [29] and brome-grass [31] in the Great
Plains, prairie wetlands in Florida [53], to tundra in the Arctic
[10], and to growing crop [7]. The LSP model includes 16 parame-
ters as shown in Table 2. The vegetation energy balance is calcu-
lated using the model developed by Verseghy et al. [51] for the
water drainage from canopy, the bulk transfer approach for the
sensible heat flux from Trenberth [49], and the latent heat flux
following [43]. The coupled energy and water balance in soil is
calculated from Philip and de Vries [44,15]. A block-centered
finite-difference scheme is employed to solve the coupled
governing equations at an adaptive time step (seconds/minutes)
in response to the forcings [7].

The LSP model was coupled to a vegetation growth model, viz.
Decision Support System for Agrotechnology Transfer (DSSAT)
model to provide the flux estimates during dynamic vegetation
conditions [7]. The DSSAT simulates crop growth and development
at a daily step using modules for soil, soil–plant–atmosphere,
weather, management, including irrigation and fertilization [26].
The DSSAT model includes modules for over 25 types of crops,
including corn, soybeans, wheat, cotton, and different grass types
for pasture. The model has been extensively tested in different



Table 1
Vegetation characteristics and growth stages during MicroWEX-2 from Casanova and Judge [7].

Growth stage Number of days Canopy height LAI Vegetation cover Characteristics

Early 27 (DoY 78–105) <17 cm <0.2 <0.22 Almost bare soil
Mid 30 (DoY 105–135) 17–162 cm 0.2–2.49 0.22–1.00 Maximum vegetative growth stage
Reproductive 19 (DoY 135–154) 162–200 cm 2.49–2.75 1.00 Silking and ear formation, biomass increases

primarily due to ear development

Table 2
Parameters included in the LSP model [7]. The values for canopy parameters were
from Goudriaan [21] and ranges for soil parameters were from Rossi and Nimmo [47].

Parameter Description Values

CANOPY zob Bare soil roughness length (m) 0.004
x Leaf angle distribution

parameter
0.819

r Leaf reflectance 0.474
�c Canopy emissivity 0.973
�s Soil emissivity 0.953
cd Canopy drag coefficient 0.328
iw Canopy wind intensity factor 67.9
lw Leaf width (m) 0.0531
Fb Base assimilation rate (kg CO2/

m2 s)
�0.82 � 10�8

�photo Photosynthetic efficiency
(kg CO2/J)

0.897 � 10�6

soila Slope parameter for rs (m2 s/
kg H2O)

370

soilb Intercept parameter for rs (m2 s/
kg H2O)

�531

Soil (0–
1.7 m)

k Pore-size index 0.1–0.9
w0 Air entry pressure (m H2O) 0.05–1.0
Ksat Saturated hydraulic conductivity

(m/s)
10�5–10�3

/ Porosity (m3/m3) 0.2–0.55

Soil (1.7–
2.7 m)

k Pore-size index 0.05
w0 Air entry pressure (m H2O) 0.019
Ksat Saturated hydraulic conductivity

(m/s)
8.93 � 10�5

/ Porosity (m3/m3) 0.41
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hydro-climatic regions [4,3,25,36,13,26,5,34,1,48]. The model was
also tested and calibrated for its applicability to North-Central
Florida [8] before it was coupled to the LSP model. In the coupled
LSP-DSSAT model, the LSP model provides DSSAT with estimates
of soil moisture and temperature profiles and ET. The DSSAT model
provides LSP with vegetation characteristics that influence heat,
moisture, and radiation transfer at the land surface and in the va-
dose zone [7]. The coupled LSP-DSSAT model has been used to
implement the EnKF to understand impacts of simultaneous
state-parameter estimation and forcing uncertainties on root-zone
soil moisture for dynamic vegetation [37].

2.3. Assimilation algorithms

In the following sections, a brief overview of the PF and the
EnKF techniques is provided, along with the four different param-
eter resampling algorithms used in this study.

2.3.1. Particle Filter
In the PF [20], a set of particles representing state vectors is

propagated in parallel, such that each state vector represents one
realization of a non-linear model. The state equation for each par-
ticle in the filter is [19,39]:

xi�
t ¼ f ðxiþ

t�1;u
i
t�1; h

þ
t�1; t � 1Þ þ gi

t�1 ð1Þ

where f(�) is the non-linear model, xi�
t is the state of the ith particle

prior to the update at time t, xiþ
t�1 is the posterior state of the ith par-

ticle at time t � 1, ui
t�1 represents the meteorological forcings and
other inputs, hþt�1 represents the model parameters, and gi
t�1 is the

model error. In our study, the model physics are assumed to be per-
fect ðgi

t�1 ¼ 0Þ. Eq. (1) also provides the transition probability,
pðxi�

t jxi
t�1Þ, of xi�

t .
The observation equation given in Eq. (2) relates the prior state

(xi�) to the observations (di) through the measurement operator h,
perturbed by errors associated with the observations, �, at time t.

di
t ¼ hxi�

t þ �i
t ð2Þ

where � is the error associated to the observations.
The PF represents the posterior state estimates, xi

t , as a set of
weights, wi

t , calculated for each particle i. These combined weights
construct the posterior PDF as given in Eq. (3). During assimilation
at time t, the weight of the ith particle is updated based on the like-
lihood of the observation, pðdi

t jxi�
t Þ, as given in Eq. (4)

pðxt jdtÞ ¼
XN

i¼0

wi
tdðxt � xi�

t Þ ð3Þ

wi
t / wi

t�1
pðdi

t jxi�
t Þpðxi�

t jxi
t�1Þ

qðxi�
t jxi

t�1;d
i
tÞ

ð4Þ

where d(�) is the Kronecker delta function and q(�) is the proposal
function. Past studies in hydrology have used the state Eq. (1) as
the proposal function in Eq. (4), i.e. qðxi�

t jxi
t�1; d

i
tÞ ¼ pðxi�

t jxi
t�1Þ. Using

the assumption, Eq. (4) can be simplified to obtain the normalized
weights for N particles as:

wi
t ¼ wi

t�1
pðdi

t jxi�
t ÞPN

j¼0wj
t�1pðdj

tjx
j�
t Þ

ð5Þ

Even though, the observation error in the PF need not be Gauss-
ian, typically it is assumed Gaussian [38,23]. Then, the likelihood,
pðdi

t jxi�
t Þ, can be represented as pðdi

t � hxi�
t jRÞ and

pð�i
t jRÞ ¼

exp � 1
2 �

iT
t R�1�i

t

� �
2pk=2

ffiffiffiffiffiffi
jRj

p ð6Þ

where R is matrix of dimension k representing measurement error
variance. Fig. 1 compares and illustrates the key steps involved in
the PF. The posterior state estimated from the N particles is given by,

xt ¼
XN

i¼0

xi�
t wi

tdðxt � xi�
t Þ ð7Þ
2.3.2. Resampling algorithms in PF
During the update step in PF, the weights wi

t are computed and
used to resample the PDF for N particles. In this study, we compare
four different parameter resampling algorithms within the PF: PF-
NRNM, PF-RR, PF-RR2, and PF-RR3. The PF-RR, PF-RR2, and PF-RR3
algorithms employ the RR [33] algorithm to resample the prior
state vector.

� Particle filter without resampling or memory (PF-NRNM) – In the
PF-NRNM algorithm, the states and parameters of the initial
particles are not resampled and remain unchanged throughout
assimilation similar to the openloop case. The algorithm



Fig. 1. Implementation of the (a) ensemble Kalman Filter and (b) Particle Filter algorithms.
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maintains diversity because it does not retain memory and the
weights ðwi

tÞ are not dependent on the weights computed dur-
ing the previous update ðwi

t�1Þ, as given in Eq. (8). The posterior
parameter distribution is estimated from the original uniform
parameter distribution during each update. This algorithm is
similar to the GLUE methodology [2]
wi
t ¼

pðdi
t jxi�

t ÞPN
j¼0pðdj

tjx
j�
t Þ

ð8Þ

In contrast, in a non-resampling PF with memory, the presence of
memory due to the dependence of weights between consecutive
updates, as given in Eq. (5), leads to sample impoverishment.
� Particle Filter with residual resampling (PF-RR) – In the PF-RR

algorithm, both the model states and parameters are resampled
using the RR algorithm [33]. The parameters are not perturbed.
For example, if the third and fifth particles out of 10 particles
obtained updated weights of 0.2 and 0.8, respectively, the state
Fig. 2. Resampling algorithms for parameters within the PF used in this study. RR re
parameter perturbation, and RR3 represents residual resampling with uniform paramet
and parameter values corresponding to the third and fifth par-
ticles are replicated two and eight times, respectively, to obtain
10 updated particles (see Fig. 2).
� Particle Filter with residual resampling and Gaussian parameter

perturbation (PF-RR2) – In the PF-RR2, the RR algorithm is used
for resampling states and parameters as in PF-RR, but the
resampled parameters are perturbed by a Gaussian error with
zero mean and standard deviation, srt, to introduce diversity.
The rt is the standard deviation of the parameters at time t
before resampling and s is a tuning parameter which deter-
mines the radius around each particle being explored. s was
set to 0.1 in this study, following [39].
� Particle Filter with residual resampling and uniform parameter

replacement (PF-RR3) – Similar to the PF-RR2, the RR algorithm
is also used to resample states and parameters in the PF-RR3
algorithm. But, unlike the Gaussian error, every replicated
parameter is resampled from a uniform distribution con-
structed from the minimum and maximum value of parameters
presents residual resampling, RR2 represents residual resampling with Gaussian
er replacement.
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contained in the resampled set (see Fig. 2). Thus this algorithm
resamples from a wider distribution than the one in the PF-RR2
algorithm, offering more diversity in parameter values.

The PF-RR and PF-RR3 algorithms represent two extremes in
standard deviations of errors in posterior estimates of parameters.
The PF-RR represents a standard deviation of zero, while the
PF-RR3 algorithm represents a case of maximum standard deviation.

2.3.3. Ensemble Kalman filter
Both the EnKF and the PF have the same propagation step but

have different update steps. As described in Section 2.3.1, the PF uses
the entire PDF of the states given the observations to update the pos-
terior states, while the EnKF assumes that the states and parameters
are Gaussian in calculating the Kalman gain which is then used to up-
date the posterior states. The posterior state vectors xiþ

t for the ith
ensemble at time t is computed as a linear combination of the prior
estimate xi�

t and the observation di
t weighed by the Kalman gain Kt

xiþ
t ¼ xi�

t þ Ktðdi
t � hxi�

t Þ ð9Þ

The Kalman gain can be calculated as [18]:

K ¼ PxHTðHPxHT þ ReÞ�1 ð10Þ
where Px represents the prior state covariance matrix, Re is the
covariance matrix of the observation errors, and H is the observa-
tion operator relating the ensemble of perturbated observations to
the ensemble of states. The posterior state estimated from the N
ensemble members is given by,

xt ¼
XN

i¼0

xiþ
t

N
ð11Þ
2.3.4. Comparison of PF and EnKF
As mentioned in Section 2.3.3, the primary difference between

the PF and the EnKF is in the update step. The PF generates the pos-
terior estimates by resampling the prior estimates based upon the
weights computed from Eq. (5), while the EnKF computes the pos-
terior estimates as a linear combination of the prior estimates and
the innovations weighted by the Kalman gain [Eq. (9)]. The above
difference in the update step may lead to parameter impoverish-
ment in the PF when parameters are also updated because resam-
pling limits the posterior estimates to a subset of the prior values.
In the EnKF, the parameter values does not suffer from diversity is-
sues since the posterior estimates from Eq. (9) are not limited to a
subset of the prior values.

Another difference between the PF and the EnKF algorithms is
their effect on the update of unobserved states and parameters in
the augmented state vector. In the PF, the posterior weights, wt,
used for updating the unobserved states and parameters are
obtained based only upon the likelihood of the observed states,
pðdi

tjxi�
t Þ, as shown in Eq. (5). Since the proposal function in

Eq. (4) is assumed to be the state equation, f(�), in Eq. (1), the rela-
tion between the observed and unobserved states and parameters
are not embedded within the computations of the posterior
weights. However, in the EnKF, the state covariance matrix, Px, in-
cludes correlations between unobserved states and parameters
and the observed states and thus regulates the updates of the
unobserved states and parameters. Therefore, while performing
simultaneous update of states and parameters, augmenting param-
eters that are not significantly sensitive to the observed states may
impact the performance of the PF more adversely than the EnKF.

The third significant difference between the PF and the EnKF is
the effect of number of particles or ensemble members on the per-
formance of the filters. Since the PF needs to resolve higher-order
distribution properties that are ignored by the EnKF, more particles
may be required in the implementation of the PFs for reliable com-
parisons with the EnKF. In a recent study, 500 particles were cho-
sen for assimilation to achieve reliable comparisons between the
PF and the EnKF for rainfall runoff [50]. Zhou et al. [54] found that
particle sizes greater than 800 resulted in nearly the same RMSEs
between the PF and the EnKF for root zone soil moisture. In this
study, we analyze the convergence of the RZSM estimates to deter-
mine the number of particles needed in the PF for our application.

3. Methodology

In this section, we describe the LSP-DSSAT simulations and
implementation of the assimilation algorithms in this study.

3.1. LSP-DSSAT simulation

At the MicroWEX-2 site, the first 1.7 m of soil was primarily
sandy, with 89.4% sand by volume and the second layer
(1.7–2.7 m) constituted 40.5% sand by volume. In the LSP model,
the soil was discretized into 35 computational blocks (nodes) in
the two layers. The blocks increased in thickness exponentially,
with 4 blocks in the top 5 cm of the soil. The coupled LSP-DSSAT
simulations were conducted from planting on DoY 78, to harvest,
on DoY 153, during a growing season of sweet corn in 2004. Micro-
meteorological and vegetation forcings for the simulations were
obtained from the MicroWEX-2 and DSSAT, respectively. Initial
conditions were not known during the MicroWEX-2 because sen-
sor installation was completed 7 days after planting. The first val-
ues observed by the soil moisture and temperature sensors were
used as the initial moisture and temperature values for the DoY 78.

3.2. Implementation of assimilation algorithms

In this study, the non-linear propagator f(�) in Eq. (1) represents
the coupled LSP-DSSAT model; x is the state vector consisting of
volumetric soil moisture (VSM) at different depths in the soil esti-
mated by the LSP-DSSAT model; ut is the vector of meteorological
forcings at time t, and h are the time-invariant model parameters in
the LSP model, shown in Table 2.

The VSM observations at 0–5 cm for assimilation were obtained
from MicroWEX-2 observations at the depths of 2 and 4 cm and
assumed to be unbiased, following Lorenc and Hammon [35]. The
augmented state vector technique [9] is used in this study to simulta-
neously estimate states and parameters. The augmented state vector
xi (see Eq. (12)) includes soil moisture at the 35 computational nodes
and the imperfectly known parameters, namely, porosity (/), air entry
pressure (w0), pore-size index (k), and saturated hydraulic conductiv-
ity (Ksat) describing the first soil layer, assumed homogeneous. These
four parameters were found to be the most influential for RZSM
estimation, based upon time-dependent correlations of the RZSM
estimates to the 16 parameters in the LSP model [37]. In this study,
the second layer (1.7–2.7 m) of soil was assumed to have known
constitutive properties, as shown in Table 2 obtained from Casanova
and Judge [7]. The ith particle is therefore expressed as,

xi ¼

VSMi1

VSMi2

..

.

VSMik

/i

w0i

Ksati

ki

2
666666666666664

3
777777777777775

ð12Þ

where k represents the number of nodes of the LSP model.
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The RZSM was calculated from the LSP-DSSAT model predic-
tions using the following equation

RZSM ¼
Xm

i¼1

VSMiDzi ð13Þ

where m indicates the total number of nodes (blocks) within the
root zone (0–1.2 m), Dzi the thickness of the ith node, and VSMi

the volumetric soil moisture at ith node.
Soil moisture observations (both synthetic and from

MicroWEX-2) at depths of 2 and 4 cm were assimilated into the
LSP-DSSAT model every 3 days using the PF and EnKF. The assimi-
lation time was chosen to be 6 a.m.EST for this study, correspond-
ing to the current and near-future availability of remotely sensed
soil moisture from microwave observations [32].

The RZSM estimates and their standard deviations obtained
from the model were compared with the truth for both the PF
and EnKF. The RMSE between the mean estimates and the truth
along with the time-average ensemble standard deviation (ASD)
were computed to quantify algorithm performance. The root mean
square differences (RMSD) between the estimates and field obser-
vations along with the ASD was used to quantify the filter perfor-
mances in the MicroWEX-2 case. While the RMSE/D is a metric of
accuracy, the ASD is a metric of uncertainty and can be used as an
error metric of the RMSE. An optimal estimate of RZSM would have
low values of both the RMSE/D and ASD

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

XNt

t¼1
ðRZSMmean

t � RZSMtruth
t Þ2

s
ð14Þ

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

XNt

t¼1
ðRZSMmean

t � RZSMobs
t Þ

2

s
ð15Þ

ASD ¼ 1
N

XNt

t¼1

1
N

XN

i¼1

ðRZSMi
t � RZSMmean

t Þ2 ð16Þ

where Nt is the number of RZSM estimates over time and RZSMmean
t

is the mean RZSM at time t computed from the N particles. The
number of particles in the filters, N, were determined based upon
convergence of RZSM using two PF algorithms implemented with
and without resampling. Fig. 3 shows the RMSEs in the RZSM esti-
mates obtained by the PF-NRNM and PF-RR2 algorithms for particle
sizes varying from 50 to 2000, when synthetic observations of VSM
were assimilated. Significant reductions in the RMSE values were
observed when the particle size was increased from 50 to 500,
but further increases in the particles did not result in continued
improvements in RMSE. In this study, 500 (N = 500) particles were
used for assimilation in both the PF and the EnKF algorithms.
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Fig. 3. RMSEs in the RZSM estimates for various particle sizes when synthetic
observations of VSM at 0–5 cm were assimilated using the PF-NRNM and PF-RR2
algorithms.
3.3. Uncertainty in forcings, observations, and parameters

In this study, the errors in both synthetic and MicroWEX-2
observations were assumed Gaussian with zero mean. The stan-
dard deviation of the errors was 2% by volume [6]. The four uncer-
tain soil parameters were randomly generated from a uniform
distribution with literature-based upper and lower bounds (see Ta-
ble 2). The use of a uniform distribution avoids the generation of
negative parameters and assumes that all values are equally likely.
Among all the inputs/forcings to the LSP-DSSAT model, precipita-
tion/irrigation observations typically have the highest errors com-
pared to other micrometeorological parameters. The errors in
precipitation/irrigation observations can range between 3 and
12%, depending on the duration and intensity of rainfall [11,22].
In this study, a Gaussian observation error with standard deviation
equal to 12% of the observed value of precipitation/irrigation was
introduced during events. No errors were introduced in the ab-
sence of the events [37].
3.4. Synthetic and field observations

The synthetic truth was assumed to be one of the particles dur-
ing an openloop simulation of the LSP-DSSAT using perturbed pre-
cipitation forcings and perturbed parameters. A zero-mean
Gaussian error with 2% standard deviation was added to the syn-
thetic truth to generate synthetic observations. The synthetic truth
was not included in the 500 particles used during the assimilation.
The field observations were obtained from the MicroWEX-2 exper-
iment, described in Section 2.1. As done in the synthetic case, a
zero-mean Gaussian error with 2% standard deviation [6] was also
added to the field observations.
4. Results and discussion

4.1. Synthetic experiment

4.1.1. State estimation
Fig. 4(a) shows the absolute errors in RZSM estimates (DRZSM)

obtained using the four PF algorithms for the synthetic case. The
mean estimates using the PF algorithms are closer to the truth over
the entire season (see Fig. 5(a)) compared to the mean estimates
from an ensemble of 500 realizations without assimilation (open-
loop). Table 3 shows the RMSE and ASD obtained for the PF algo-
rithms when synthetic observations are assimilated. The RMSEs
in the RZSM estimates are reduced by 76% (0.006 m3/m2), 72%
(0.007 m3/m2), and 72% (0.007 m3/m2) using the PF-RR3, PF-RR2,
and PF-NRNM algorithms, respectively, compared to those ob-
tained by the openloop. Since the PF-RR2 and PF-RR3 algorithms
narrow the parameter space due to resampling, their ASD values
are lower (0.008 m3/m2 and 0.01 m3/m2, respectively) compared
to the PF-NRNM algorithm. As mentioned earlier in Section 2.3.2,
the PF-NRNM algorithm overcomes the issue of sample impover-
ishment by restricting the dependence of weights between consec-
utive updates and results in the highest ASD value of 0.018 m3/m2.
Although the PF-RR algorithm provides the lowest ASD of
0.003 m3/m2, the reduction in the RMSE of 64% compared to the
openloop is the lowest among the PF algorithms indicating the
algorithm is over-confident of its estimates. This low reduction in
the PF-RR algorithm is due to the lack of parameter diversity and
convergence early during the season (DoY 119) to parameter val-
ues that are farther from the truth (see Section 4.1.2). While the
early convergence decreases the RMSEs during the early stage of
crop growth, they result in RZSM estimates that drift away from
the truth as vegetation grows (see Table 4). The PF-NRNM, PR-
RR2, and PF-RR3 algorithms maintain parameter diversity and ex-
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Fig. 4. Absolute errors/differences in mean estimates of RZSM estimated by the LSP-DSSAT model and the truth (synthetic)/observation (MicroWEX-2) when (a) synthetic and
(b) MicroWEX-2 observations of VSM at 0–5 cm were assimilated using four different PF algorithms.
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hibit larger RMSE reductions during the reproductive stage, with
the PF-RR2 algorithm providing the largest reduction of 85.7% dur-
ing the stage.
4.1.2. Parameter convergence
Since model physics is assumed perfectly known (i.e., g = 0) in

the synthetic experiment, parameters that are sensitive to RZSM
are expected to converge to the true values. Performance of the
PF algorithms can hence be gauged based on the differences be-
tween their parameter estimates and the true values. In a previous
study conducted using the LSP-DSSAT model, Monsivais et al. [37]
inferred that while / was highly correlated to RZSM with a season-
average correlation coefficient of 0.8, k, Ksat, and w0 were only mod-
erately correlated with coefficients varying between �0.25 and 0.1.
All parameters, except for /, also displayed temporal variations in
correlation to RZSM with highest correlation during precipitation
events and lower correlations during subsequent dry-down peri-
ods. Because in the implementation of the PF algorithms, the
parameters are resampled based upon weights computed from
the likelihood of the observed states without considering their sen-
sitivity to the observed states, unless assimilation is performed at
times of highest sensitivity, PFs may lead to parameter estimates
that are far from the truth. The PF-NRNM and PF-RR3 algorithms
maintain a wider parameter diversity and therefore converge to
parameter means that are closer to the truth but with higher
uncertainty compared to the PF-RR and PF-RR2 algorithms. Since
the PF-RR algorithm does not involve parameter perturbation, it
leads to convergence early during the season (DoY 119) with ASD
values of zero. Table 6 gives the means and standard deviations
of /, w0, k, and Ksat at the end of the season when synthetic obser-
vations were assimilated.
Porosity is highly correlated to RZSM throughout the season,
and all the PFs lead to / values that are close to the truth (see Table
6). The maximum difference between the estimates and the true
value was approximately 0.05 for PF-RR3. The PF-RR algorithm is
the fastest converging and converges to a / value of 0.2912 by
DoY 119 (see Fig. 7). The PF-RR2 algorithm is able to estimate a
mean / value of 0.3217 with a SD of 0.0475 due to the Gaussian
perturbation during resampling (see Fig. 7).

Ksat highly influences moisture transport immediately after pre-
cipitation events and showcases strongest sensitivity to RZSM
immediately following such events. The estimated Ksat is lower
than the true value for all PF algorithms (see Fig. 8). Since the first
four assimilation updates (i.e., DoY 80, DoY 83, DoY 86, and DoY
89) were performed during times of low sensitivity to RZSM, the
PF-RR and PF-RR2 algorithms converge to Ksat values farther from
the truth with low predicted uncertainty and continue to resample
lower values after DoY 90. This results in poor RZSM estimates
during dry-down periods throughout the season, as seen in
Fig. 5(a). The PF-NRNM and PF-RR3 algorithms maintain a wider
parameter diversity throughout assimilation and the mean
estimates of Ksat and RZSM estimates are closer to the truth, but
with higher predicted uncertainty. Consequently, the ASDs in
RZSM estimates increase significantly for all PFs immediately after
precipitation events (e.g., DoY 110, DoY 115, and DoY 124) and
continue to remain high during the initial dry-down phase as seen
in Fig. 5(b).

Similar to the Ksat, k and w0 are also sensitive to precipitation
events and are estimated with larger uncertainties around such
events (see Figs. 9 and 10). While k is moderately correlated to
RZSM during the early and reproductive stages of the season, it is
relatively uncorrelated during the mid-stage. None of the PF
algorithms show strong convergence to the true value of k. The
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Fig. 5. (a) Means and (b) ensemble standard deviations (SD) of posterior RZSM estimates when synthetic observations of VSM at 0–5 cm were assimilated using EnKF, PF-RR2
and PF-RR3 algorithms.

440 K. Nagarajan et al. / Advances in Water Resources 34 (2011) 433–447
PF-NRNM and PF-RR3 algorithms have mean estimates that are
closer to the truth. In the PF-RR2 algorithm, the k estimates
converge towards the truth until DoY 105 and then move farther
from the truth because of low correlation to RZSM during the
mid stage.

4.1.3. Comparison of PF with EnKF
When synthetic observations of VSM are assimilated, the EnKF

offers the best overall performance with a 84% reduction in RMSE
(0.004 m3/m2) over the openloop estimates (see Fig. 5(a)), com-
pared to 76% offered by the best PF-RR3 algorithm. In a synthetic
experiment, the differences in the performance of the PF and EnKF
algorithms can be gauged based on the deviation of parameter esti-
mates from their true values.

Since porosity, /, is highly sensitive to RZSM, both the PF and
EnKF algorithms converge to values that are close to the truth
(see Table 6). The standard deviation in the estimates of / vary be-
tween the PF and EnKF algorithms with the PF-RR algorithm pro-
viding the least standard deviation by converging around DoY115
(Fig. 7). In the EnKF, parameters, Ksat, k, and w0, showcase equifinal-
ity (Figs. 8–10) by maintaining large predicted uncertainty and not
converging to the true values with no adverse effects on the RZSM
estimates. On the contrary, in PF algorithms that maintain the least
diversity, namely the PF-RR and PF-RR2 algorithms, the parameters
converge to values far away from the truth, providing reduced
improvements to RZSM estimates. The PF-NRNM and PF-RR3 algo-
rithms provide parameter estimates that are closer to those esti-
mated by the EnKF and also provide the lowest RMSEs among
the PF algorithms over the entire season.

Seasonal variations in RMSEs are also observed between the PF
and EnKF algorithms. Significant improvements in RMSEs are not
observed in the PF algorithms in comparison to the EnKF as the
season progresses (see Table 4). Among the PF algorithms, the
PF-RR2 algorithm provided the maximum improvement with a
53.3% RMSE reduction during the early stage to 85.7% during the
reproductive stage. In the EnKF, the reductions in RMSE increases
from 60% during the early stage to 97.1% during the reproductive
stage (see Table 4). The reduced improvements obtained in the
PF algorithms is attributed to the suboptimal computation of the
weights, which are used for resampling the parameters, based only
upon the likelihood of the observed states, as discussed in Section
2.3.4.

4.2. MicroWEX-2 experiment

4.2.1. State estimation
When MicroWEX-2 observations were assimilated, additional

bias in the form of errors are introduced due to imperfect knowl-
edge of the model physics. As mentioned earlier, a common prac-
tice to deal with the bias in the model is using the augmented
state vector with added uncertainties in the sensitive parameters.
Fig. 4(b) shows the absolute differences in RZSM estimates
(DRZSM) obtained using the four PF algorithms for the MicroW-
EX-2 case. The PF-RR algorithm performs poorly due to lack of
parameter diversity and the RZSM estimates deviate significantly
from the observations. The PF-NRNM algorithm results in a 16%
(0.021 m3/m2) RMSD reduction over openloop estimates, and the
PF-RR2 and PF-RR3 algorithms result in slightly lower but similar
improvements of 8% (0.023 m3/m2) and 4% (0.024 m3/m2) RMSD
reductions, respectively (see Table 3). This suggests that parameter
diversity should be maintained to obtain lower RMSD values when
real observations are assimilated. Under dynamic land surface con-
ditions, when the sensitivities of parameters to RZSM vary over
time, maintaining the diversity in parameters may be essential
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Table 3
Root mean square errors and differences (RMSE/D) and average standard deviations
(ASD) of the RZSM (m3/m2) averaged over the whole season assimilating synthetic
and MicroWEX-2 observations of VSM at 0–5 cm, every 3 days using the EnKF and PF
algorithms.

Scenario Synthetic MicroWEX-2

RMSE ASD RMSD ASD

EnKF 0.004 0.009 0.019 0.009
PF-NRNM 0.007 0.018 0.021 0.017
PF-RR 0.009 0.003 0.029 0.008
PF-RR2 0.007 0.008 0.023 0.010
PF-RR3 0.006 0.010 0.024 0.012
Openloop 0.025 0.024 0.032 0.025

Table 4
RMSE and ASD of the RZSM (m3/m2) averaged over different growth stages of corn
when assimilating synthetic observations of VSM at 0–5 cm every 3 days using the
EnKF and PF algorithms.

Scenario Early stage Mid stage Reproductive stage

RMSE ASD RMSE ASD RMSE ASD

EnKF 0.006 0.008 0.002 0.010 0.001 0.008
PF-NRNM 0.008 0.015 0.007 0.019 0.007 0.020
PF-RR 0.008 0.005 0.008 0.002 0.011 0.001
PF-RR2 0.007 0.008 0.007 0.007 0.005 0.009
PF-RR3 0.007 0.009 0.004 0.009 0.008 0.013
Openloop 0.016 0.015 0.024 0.026 0.035 0.034

Table 5
RMSD and ASD of the RZSM (m3/m2) averaged over different growth stages of corn
when assimilating MicroWEX-2 observations of VSM at 0–5 cm every 3 days using
the EnKF and PF algorithms.

Scenario Early stage Mid stage Reproductive stage

RMSD ASD RMSD ASD RMSD ASD

EnKF 0.012 0.008 0.015 0.009 0.029 0.009
PF-NRNM 0.009 0.014 0.013 0.017 0.035 0.019
PF-RR 0.021 0.011 0.028 0.008 0.037 0.003
PF-RR2 0.018 0.012 0.016 0.010 0.034 0.006
PF-RR3 0.007 0.010 0.016 0.011 0.040 0.015
Openloop 0.009 0.017 0.021 0.026 0.055 0.034
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for improved estimation rather than allowing them to converge
earlier during assimilation as happened in the case of the PF-RR
algorithm.
4.2.2. Parameter convergence
The means and standard deviations of the parameters estimated

using the four PF algorithms and the EnKF are given in Table 7.
Similar to the synthetic case, since parameter diversity is not
implemented via resampling, the PF-RR algorithm converges on
DoY 137 leading to unrealistic zero ASD values. As mentioned ear-
lier, among the four parameters, porosity is most strongly corre-
lated to RZSM. Correlations between Ksat and RZSM are sensitive
to precipitation events with stronger correlations during precipita-
tion events and weaker correlations during dry-down periods. The
PR-NRNM and EnKF algorithms converge to similar / and Ksat val-
ues (see Figs. 11 and 12) and also provide similar overall improve-
ments to RZSM estimates. The PF-NRNM and PF-RR2 algorithms
also converge to similar porosity values of 0.2842 and 0.2514 in
the reproductive stage offering RMSDs of 0.035 and 0.034 m3/m2,
respectively. Although the PF-RR2 algorithm converges to smaller
values of Ksat compared to the PF-NRNM algorithm, weaker
correlation between Ksat and RZSM compared to porosity has lesser



Table 6
Means and standard deviations (Std. dev.) of the four soil parameters in the LSP-DSSAT model when assimilating synthetic observations of VSM at 0–5 cm every 3 days using the
EnKF and PF algorithms at the end of season.

Scenario / w0 k Ksat

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

EnKF 0.2892 0.0383 0.4927 0.1863 0.6138 0.1566 5.6 � 10�4 2.5 � 10�4

PF-NRNM 0.3057 0.0867 0.4833 0.2359 0.5559 0.2331 4.9 � 10�4 2.7 � 10�4

PF-RR 0.2912 0.0000 0.1931 0.0000 0.4073 0.0000 1.2 � 10�4 0.0000
PF-RR2 0.3217 0.0475 0.1788 0.0884 0.4753 0.0844 2.7 � 10�4 7.5 � 10�5

PF-RR3 0.3318 0.0604 0.5178 0.2089 0.5802 0.1521 4.6 � 10�4 2.3 � 10�4

Truth 0.2760 0.6554 0.7572 5.8 � 10�4
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Fig. 7. Posterior distributions of porosity (/) during the growing season for the four PF algorithms and EnKF when synthetic observations of VSM were assimilated. The
Square and triangle markers represent the true and mean values, respectively. Grayscale bar represents the probability values of /.
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impacts on RZSM estimates. The / values estimated by the PF-RR
and PF-RR3 (see Fig. 11) algorithms are significantly different from
the other algorithms and offer reduced improvements, especially
in the reproductive stage, where correlations between porosity
and RZSM are the strongest. The estimated k and w0 parameters
significantly vary between algorithms (see Figs. 13 and 14) since
they are the least correlated to RZSM.

4.2.3. Comparison of PF with EnKF
The EnKF offers a better performance over the PF with a 24%

RMSD reduction (0.019 m3/m2) over openloop estimates, similar
to the synthetic case. Fig. 6 shows the means and standard
deviations (SDs) of the RZSM estimates obtained from the posterior
distributions using the PF-RR2, PF-RR3, and EnKF algorithms when
MicroWEX-2 observations are assimilated. Unlike the synthetic
case, the differences in the performance of the EnKF and the PF
are minimal in the MicroWEX-2 case because the imperfect knowl-
edge of model physics affects both the filtering techniques in a
similar manner. The RMSDs were slightly higher for the PF algo-
rithms because they are more sensitive to model and observation
errors than EnKF.

While the EnKF exhibits the lowest RMSD over the entire sea-
son, variations within the season can be observed in the perfor-
mance. During the early stage, the assimilation decreases the
uncertainty (ASD) of estimates, but does not reduce the RMSDs.
While RMSD denotes the degree of accuracy between estimates



Table 7
Means and standard deviations (Std. dev.) of the four soil parameters in the LSP-DSSAT model when assimilating MicroWEX-2 observations of VSM at 0–5 cm every 3 days using
the EnKF and PF algorithms at the end of season.

Scenario / w0 k Ksat

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

EnKF 0.2662 0.0484 0.3722 0.1892 0.4174 0.1518 4.1 � 10�4 2.3 � 10�4

PF-NRNM 0.2842 0.0755 0.4685 0.2519 0.5852 0.2294 5.0 � 10�4 2.9 � 10�4

PF-RR 0.4494 0.0000 0.1010 0.0000 0.5101 0.0000 6.9 � 10�4 0.0000
PF-RR2 0.2514 0.0349 0.2822 0.0610 0.2076 0.0520 2.2 � 10�4 1.4 � 10�5

PF-RR3 0.3820 0.0583 0.4744 0.2164 0.6615 0.1027 5.0 � 10�4 2.5 � 10�4
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Fig. 11. Posterior distributions of porosity (/) during the growing season for the four PF algorithms and EnKF when MicroWEX-2 observations of VSM were assimilated. The
triangle markers represent the mean values. Grayscale bar represents the probability values of /.
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Fig. 12. Posterior distributions of saturated hydraulic conductivity (Ksat) during the growing season for the four PF algorithms and EnKF when MicroWEX-2 observations of
VSM were assimilated. The triangle markers represent the mean values. Grayscale bar represents the probability values of Ksat.
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and the observation, ASD represents the uncertainty in the esti-
mates. The ASDs of RZSM estimates are similar for the EnKF, PF-
RR2, and PF-RR3 (0.008–0.011 m3/m2) and are the highest for the
PF-NRNM (0.016 m3/m2). During the mid and reproductive stages,
all the algorithms, except for the PF-RR, provide significant reduc-
tions in both the RMSDs and ASDs over openloop estimates (see
Table 5). Higher RMSD values in the reproductive stage compared
to those obtained in the synthetic experiment are likely due to the
imperfect implementation of soil and plant characterization, such
as interactions between the roots and soil in the model compared
to field measurements. Typically, land is ploughed and disced up to
30 cm at the beginning of the growing season. This may results in
heterogeneity of soil properties. Assumptions of homogeneous soil
in the LSP-DSSAT model in this study may not be sufficient to
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Fig. 13. Posterior distributions of pore-size index (k) during the growing season for
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Fig. 14. Posterior distributions of air-entry pressure (w0) during the growing season fo
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capture reality. In addition, the DSSAT model may need to be up-
dated for canopy and root distribution parameters, along with
the soil parameters in the LSP model. These parameters have max-
imum impact during the reproductive stage and the RMSDs are rel-
atively higher during this stage.

5. Summary and conclusions

In this study, we compared the performance of four PF-based
algorithms with the EnKF in improving RZSM estimates from
assimilating synthetic and field observations of soil moisture under
dynamic vegetation. Both the filtering techniques offered signifi-
cant reductions in RMSE/RMSD and ASD in the synthetic and Mic-
roWEX-2 cases compared to the openloop.
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In the synthetic experiment, the PF-RR2, PF-RR3, and the PF-
NRNM algorithms that retained parameter diversity offered similar
reductions in RMSEs (72–76%). The EnKF offered the best RZSM
estimate with a 84% reduction in RMSE compared to openloop esti-
mates when synthetic observations were assimilated. The differ-
ences in RZSM estimates between the PFs and the EnKF were due
to the differences in the update mechanisms of the unobserved
states and parameters. In the PF, the posterior weights used for
updating the unobserved states and parameters are obtained based
only upon the likelihood of the observed states. If the proposal
function in the PF is assumed to be the state equation, the relation
between the observed and unobserved states and parameters are
not embedded within the computations of the posterior weights.
However, in the EnKF, the state covariance matrix includes corre-
lations between unobserved states and parameters and the ob-
served states and thus regulates the updates of the unobserved
states and parameters. Therefore, unless assimilation is performed
at times of highest sensitivity, PFs may lead to parameter estimates
that are farther from the truth. This behavior was observed with
Ksat, w0, and k estimates because assimilation was performed dur-
ing times of lowest sensitivity. Since porosity, /, was highly sensi-
tive to soil moisture throughout the season, all algorithms
produced estimates that were close to the true value. While per-
forming simultaneous update of states and parameters, augment-
ing parameters that are not significantly sensitive to the
observed states may impact the performance of the PF more ad-
versely than the EnKF.

Unlike the synthetic case, the differences in the performance of
the PFs and the EnKF were minimal in the MicroWEX-2 case be-
cause imperfect knowledge of model physics affected both the fil-
tering techniques in a similar manner. The PF-NRNM and EnKF
algorithms offer 16% and 20% reductions in RMSDs respectively
over the openloop simulations. Both the algorithms converged to
similar values of / and Ksat, parameters most correlated to soil
moisture, and therefore offered similar improvements to RZSM
estimates. Although assimilation in the MicroWEX-2 case offered
improvements in RZSM estimation, they were not as high as com-
pared to the synthetic experiment (<24% RMSD reduction in Mic-
roWEX-2). This is because, in this study, only the errors in soil
and precipitation/irrigation forcings were considered. The ob-
served differences in the filter performance between synthetic
and field observations may indicate errors in model biophysics that
were not considered here, such as heterogeneous soil conditions or
errors in predictions of root distribution parameters. Presence of
unaccounted biophysical errors in the model affects PF perfor-
mance more than the EnKF leading to higher RMSDs in the repro-
ductive stage for the PF estimates.

Our synthetic and field experiments reveal that the efficiency of
PFs in representing non-Gaussian distributions and capturing non-
stationary soil–plant interactions under dynamic vegetation lar-
gely depend on model error formulation. Our experiments suggest
that both the EnKF and the PF can offer similar improvements over
openloop estimates, but recommendation for either filtering strat-
egy can only be made when their performances are assessed for
various other applications involving coupled models and when
non-linear observations are assimilated.
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