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In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil mois-
ture (RZSM) using the coupled LSP–DSSAT model during a growing season of corn. Experiments using
both synthetic and field observations were conducted to understand effects of simultaneous state–
parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM esti-
mates. Estimating the state–parameters simultaneously with every 3-day assimilation of volumetric soil
moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root
mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respec-
tively, compared to the open-loop ASD where as estimating only states lowered the ASD by approxi-
mately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM
estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation
events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indi-
cate other sources of errors in addition to those in parameters and forcings, such as errors in model
biophysics.

Published by Elsevier Ltd.
1. Introduction

Accurate knowledge of root-zone soil moisture is crucial in
hydrology, micrometeorology, and agriculture [25] for estimating
energy and moisture fluxes at the land surface. Soil moisture plays
a significant role in the partitioning of available energy at the
ground surface into sensible and latent heat, as well as in partition-
ing of rainfall into infiltration and runoff [9,57]. Soil Vegetation
Atmosphere Transfer (SVAT) models are used to simulate energy
and moisture transport in soil and vegetation, and estimate these
fluxes at the land surface and in the root zone. The interactions be-
tween the fluxes and vegetation become increasingly important as
the vegetation grows. Most SVAT models rely on observations or
empirical functions to simulate the effects of growing vegetation
on land surface models. Coupling an SVAT model with a vegetation
growth model allows inclusion of canopy effects without relying
on these observations or empirical functions [21,39,42,7,41].

Even though the coupled SVAT-vegetation models capture the
biophysics fairly well, their estimates of root-zone soil moisture
(RZSM) diverge from reality due to errors in model conceptualiza-
tion, computation, and numerical implementation, and due to
uncertainties in model parameters, forcings, and initial conditions.
Ltd.

uertero).
The model estimates of moisture in the root zone can be signifi-
cantly improved by assimilating remotely sensed [28,46,47,13],
in situ [40] observations of soil moisture or assimilating remotely
sensed surface temperature [18,49,12] into an SVAT model.

Early studies used for estimating time-varying states, assume
that the only source of errors is uncertainties in model parameters
[52,55]. Recent studies have incorporated errors in forcings, initial
conditions, as well as those in model parameters [49,48,56,29,45].
Some studies that conduct sensitivity analyses assume a lumped
error from all of the sources without incorporating errors from
each, explicitly (e.g. [12]). All these sources of uncertainties can
be explicitly incorporated using sequential data assimilation pro-
cedures, such as the Ensemble Kalman Filter (EnKF). The EnKF is
a Monte-Carlo based Kalman Filter [19] that can be used for prob-
lems that are highly non-linear, such as those in hydrology. One of
the main advantages of the EnKF compared to the Extended Kal-
man Filter is that it does not require linearization of the state equa-
tion during the propagation step. Reichle et al. [49] applied the
EnKF to estimate soil moisture profile and found an error lower
of 0.2% VSM to observations using the EnKF than the EKF. The EnKF
obtained results closer to observations than the EKF with small
number of ensemble members for applications with non-linear
functions.

The EnKF is typically applied for dynamic state estimation, but
model parameters can also be included in the framework through a
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state augmentation technique [3,42]. However, this increases the
number of model states and parameters that are estimated simul-
taneously, resulting in increased computational demand and com-
plexity. Moradkhani et al. [40] used two concatenated EnKF filters,
in which the first estimates the parameters and the second filter
estimates the states using the updated set of parameters. This
implementation of the dual state–parameter estimation is compu-
tationally more efficient, however simultaneous state–parameter
assimilation may be preferable due to tight coupling between
states and relevant parameters in the system. Recent advances in
high performance computing allow for simultaneous estimation
of states and parameters. In this study, we implement the EnKF
technique for simultaneous estimation of states and parameters
in a coupled SVAT-vegetation model.

Even though tremendous progress has been made over the last
few years to improve RZSM from SVAT models, some important is-
sues still remain unresolved. First, most of the current studies up-
date only the state estimates [45,29], not taking advantage of
correlations between state and parameters during the update. As
mentioned earlier, simultaneous state–parameter update is ideal.

Second, most of the studies involve either synthetic observa-
tions or empirically-derived near-surface soil moisture from re-
mote sensing observations (e.g. [14,42]). Rigorous studies
applying the EnKF to field observations are few, primarily due to
lack of high temporal and spatial (vertical) density datasets such
as in De Lannoy et al. [15]. Such studies can provide unique in-
sights into the biophysics implemented in the model, particularly
during changing land surface conditions.

Third, the temporal frequency of update that provides the most
optimal estimates for RZSM is still debatable. Some synthetic stud-
ies such as Walker and Houser [56], found that daily near-surface
soil moisture observations are required to achieve the best esti-
mates of near-surface soil moisture. Longer times between obser-
vations offered only marginal impact in improving the RZSM
estimates. For example, Hoeben and Troch [27] found that repeat
observation times greater than 1-day (such as every 3, 6, or 12 h)
did not improve the RMSE and it did not show any specific trend
for more frequent update intervals due to saturation effects in
the moisture profile. Most of the current studies using remotely
sensed soil moisture observations assimilate every 2–3 days, pri-
marily simulating expected temporal frequency of observations
by near-future satellite-based microwave sensors [14,12].

Fourth, the spatial (vertical) frequency of the update in the root
zone has received little attention, primarily due to lack of high den-
sity of measurements in the soil profile. For example, De Lannoy
et al. [15] used field observations of SM at different depths to esti-
mate the SM profile at temporal frequencies of 1 day, 1 week, and
8 weeks. They found that the assimilation of SM at different depths
reduced the differences between the SM estimates and observa-
tions at deeper layers than the assimilation of near-surface SM. Re-
cent research has focused on the combination of hydrological
models and remotely sensed data to estimate soil moisture
[14,41,45]. Most current studies use only near-surface soil mois-
ture to improve RZSM estimates. Understanding the effects of soil
moisture information throughout the soil profile on RZSM esti-
mates is important for hydrologic applications such as partitioning
infiltration into interflow and recharge. It accounts for the relation-
ship between the observed soil moisture near land surface and soil
moisture deeper in the soil profile.

Fifth, studies that lump the uncertainties due to forcings,
parameters, and model physics (e.g. [14]) are not able to provide
insights into the impact of each source of uncertainty on RZSM
estimates. Very few studies include uncertainties in micrometeo-
rological forcings (e.g. [56,15,45]). Walker and Houser [56] used a
synthetic study comparing RZSM estimates with and without pre-
cipitation errors and found that precipitation errors significantly
affect RZSM estimates. However, near-surface soil moisture esti-
mates were not affected by these errors when near-surface soil
moisture observations were assimilated.

The goal of this study is to address the five issues mentioned
above using EnKF to merge observations with predictions from
the coupled SVAT-vegetation model and estimate the RZSM during
dynamic vegetation conditions. Here, we use observations from
our second Microwave Water Energy Balance Experiment (Mic-
roWEX-2) to compare with the results from EnKF using synthetic
observations. Both the synthetic and the MicroWEX-2 observations
were used to conduct four sets of comparisons: (i) estimation of
state only with simultaneous estimation of state and parameters;
(ii) assimilation of soil moisture at top 5 cm with assimilation of
soil moisture throughout the root zone; (iii) assimilation con-
ducted every 1, 3, and 10 days; and (iv) assimilation including
uncertainties in precipitation/irrigation forcings with assimilation
without forcing uncertainties.

In the next section, we briefly describe the MicroWEX-2 obser-
vations, the coupled SVAT-vegetation model, and the EnKF algo-
rithm used in this study.
2. Experiment, model, and assimilation

2.1. MicroWEX-2

MicroWEX-2 was conducted from Day of Year (DoY) 78 (March
18) to DoY 153 (June 1) in 2004, to monitor micrometeorological,
soil, and vegetation conditions as well as the microwave brightness
temperatures during a growing season for sweet corn of variety
Saturn SH2. Judge et al. [33] provides a detailed description of
the experiment which is briefly summarized here. The experimen-
tal site was a 3.6 ha (9 acre) field located at the UF/IFAS Plant Sci-
ence and Research Education Unit (PSREU), in North Central Florida
(29.41N, 82.18W). The soils at the site are lake fine sand, with
89.4% sand, 7.1% clay, and a bulk density of 1.55 g/cm3. Corn was
planted at a row spacing of 76 cm, with a density of 8 plants/m2.
Irrigation and fertigation were conducted via a linear move system.
Data used in this study include soil moisture, wind speed, upwell-
ing and downwelling short- and long-wave radiation, precipita-
tion, irrigation, relative humidity, and air temperature measured
every 15 min. The soil moisture values were observed at six
depths: 2, 4, 8, 32, 64, and 100 cm, using Campbell Scientific Water
Content Reflectometers. An Eddy covariance system measured
wind speed, and a net radiometer from Radiation and Energy Bal-
ance Systems (REBS) measured up- and down-welling short- and
long-wave radiation. Four tipping-bucket rain gauges logged pre-
cipitation and irrigation at four locations in the field. Table 1 shows
the different growth stages of corn and their associated vegetation
characteristics observed during MicroWEX-2.
2.2. LSP–DSSAT model

The SVAT model used in this study is the Land Surface process
(LSP) model [32,35]. It simulates 1-D coupled energy and moisture
transport in soil and vegetation using a diffusion type equation,
and estimates energy and moisture fluxes at the land surface and
in the root zone. The model is forced with micrometeorological
parameters such as air temperature, relative humidity, downwel-
ling solar and long-wave radiation, irrigation/precipitation, and
windspeed. The original version of the LSP model has been rigor-
ously tested [32] and extended to wheat-stubble [34] and brom-
e-grass [35] in the Great Plains, prairie wetlands in Florida [58],
and to tundra in the Arctic [10]. In this study, we use a new version
of the LSP model with a modified radiation flux parametrization at
the land surface [7]. The LSP model includes 16 parameters, with



Table 1
The growing season of corn during MicroWEX-2 as described in [7].

Season Number of days Canopy height (cm) LAI Vegetation cover Characteristics

Early 27 (DoY 78–105) <17 <0.2 <0.22 Almost bare soil
Mid 20 (DoY 105–125) 17–73 0.2–1.82 0.22–1.00 Vegetation partially covering the terrain
Late 10 (DoY 125–135) 73–162 1.82–2.49 1.00 Maximum vegetative growth stage
Reproductive 19 (DoY 135–154) 162–200 2.49–2.75 1.00 Silking and ear formation, biomass increases

primarily due to ear development
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four parameters related to radiation balance, eight to latent and
sensible heat fluxes and the remaining four being soil hydraulic
properties, as shown in Table 2. The vegetation energy balance is
calculated using equations from Verseghy et al. [54] for the water
drainage from canopy, the bulk transfer approach from Trenberth
[53] for the sensible heat flux and the latent heat flux following
Peixoto and Oort [43]. The soil energy balance is calculated follow-
ing the equations from Philip and de Vries [44] and de Vries [17].

The number of soil layers, with uniform constitutive properties,
are user-defined. Two layers are used for this study: the first layer,
top 1.7 m of soil is primarily sandy, with 89.4% sand and the second
layer (1.7–2.7 m) constituted 40.5% sand. The soil has 35 computa-
tional blocks (nodes) in the two layers. The thickness of the blocks
increases exponentially, with 4 blocks in the top 5 cm of the soil. A
block-centered finite-differential scheme is employed to solve the
coupled governing equations and estimate energy and moisture
fluxes at land surface and in the root zone at an adaptive time step
(seconds/minutes) in response to the forcings [7].

The LSP model was coupled to a vegetation growth model, viz.
Decision Support System for Agrotechnology Transfer (DSSAT)
model to provide the flux estimates during dynamic vegetation
conditions [7]. The DSSAT is a crop model with modules for soil,
soil–plant–atmosphere, weather, management, and crop develop-
ment and growth [31]. The soil module simulates soil moisture
using a bucket model [38] and soil temperature as an empirical
function of air temperature and depth. The soil–plant–atmosphere
module estimates evotranspiration (ET). In the weather module,
meteorological forcings are read in, and in the management mod-
ule, irrigation, fertilization, and pest control are read or generated.
The crop module simulates the phenological development and
Table 2
Parameters included in the LSP model [7]. The values for canopy parameters were
from [23] and ranges for soil parameters were from [50].

Parameter Description Values

CANOPY
zob Bare soil roughness length (m) 0.004
x Leaf angle distribution parameter 0.819
r Leaf reflectance 0.474
�c Canopy emissivity 0.973
�s Soil emissivity 0.953
cd Canopy drag coefficient 0.328
iw Canopy wind intensity factor 67.9
lw Leaf width (m) 0.0531
Fb Base assimilation rate (kg CO2/m2 s) �0.82 � 10�8

�photo Photosynthetic efficiency (kg CO2/J) 0.897 � 10�6

soila Slope parameter for rs (m2 s/kg H2O) 370
soilb Intercept parameter for rs (m2 s/kg H2O) �531

SOIL (0–1.7 m)
k Pore-size index 0.1–0.9
w0 Air entry pressure (m H2O) 0.05–1.0
Ksat Saturated hydraulic conductivity (m/s) 10�5–10�3

/ Porosity (m3/m3) 0.2–0.55

SOIL (1.7–2.7 m)
k Pore-size index 0.05
w0 Air entry pressure (m H2O) 0.019
Ksat Saturated hydraulic conductivity (m/s) 8.93 � 10�5

/ Porosity (m3/m3) 0.41
growth, on a daily timestep, of a number of different crops, includ-
ing soybeans, wheat, and cotton. The DSSAT model was tested and
calibrated for its applicability to North-Central Florida [8] before it
was coupled to the LSP model.

In the coupled LSP–DSSAT model, the LSP model provides the
DSSAT model with estimates of soil moisture and temperature pro-
files and ET. The DSSAT model provides the LSP model with vege-
tation characteristics that influence heat, moisture, and radiation
transfer at the land surface and in the vadose zone. The LSP–DSSAT
model was rigorously tested and calibrated using observations [7].
The model estimates of surface fluxes, volumetric soil moisture
(VSM) and soil temperature using the coupled LSP–DSSAT model
were similar to those using the stand alone LSP model, indicating
that the LSP–DSSAT model can be used to simulate fluxes for dy-
namic vegetation without the need of in situ vegetation
observations.

2.3. Ensemble Kalman Filter

The assimilation algorithm used in this study is based up on the
EnKF. The EnKF algorithm propagates an ensemble of state vectors
in parallel such that each state vector represents one realization of
generated model replicates. The state equation in the EnKF for each
ensemble member is [22,40]:

xi�
t ¼ f xiþ

t�1; u
i
t�1; h

þ
t�1; t � 1

� �
þxi

t�1 ð1Þ

where f(�) is the non-linear model, xi�
t is the state of the ith after up-

date ensemble member prior to the update at time t; xiþ
t�1 is the pos-

terior state of the ith ensemble member at time t � 1; ui
t�1

represents the meteorological forcings, hþt�1 is the parameters of
the non-linear model, and xi

t�1 is the model error. In our study,
model physics is assume to be perfect xi

t�1 ¼ 0
� �

.
The A matrix, holding the ensemble members, can be expressed

by the form:

A ¼ fx1; x2; . . . ; xNg ð2Þ

where xi represents each member of the ensemble, and N is the
number of ensemble members.

If we collect all observations taken at time t into the observation
vector d of dimension m, we can express the observation process
as:

di ¼ hxi�
t þ �

j
t ð3Þ

where h(�) is the operator relating the state variables to the obser-
vations, and � is the error associated to the observations with zero
mean.

The ensemble of pertubed observations can be written as:

D ¼ fd1
; d2

; . . . ;dNg ð4Þ

and the ensemble of perturbations as:

c ¼ f�1; �2; . . . ; �Ng ð5Þ

Mathematically, the EnKF can be represented by the standard
equation

Aþ ¼ A� þ KðD� HA�Þ ð6Þ
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where A� denotes the ensemble of prior states and A+, the posterior
ensemble member, K is the Kalman gain, D is the ensemble of per-
turbed observation, and H the operator relating the ensemble of
perturbated observations to the ensemble of states.

The Kalman gain can be calculated as [20]:

K ¼ PeHTðHPeHT þ ReÞ�1 ð7Þ

where Pe represents the prior ensemble covariance matrix, and Re is
the observation error covariance matrix.

Then, the update equation can be written as:

Aþ ¼ A� þ PeHTðHPeHT þ ReÞ�1ðD� HA�Þ ð8Þ

Defining the ensemble perturbation matrix as A0 ¼ A� � A, with
A being the mean matrix of A�, and Pe = A0(A0)T/(N � 1) where N is
the number of ensemble members, Eq. (8) can be written as:

Aþ ¼ A� þ A0A0T HTðHA0A0T HT þ ccTÞ�1ðD� HA�Þ ð9Þ

where c is the ensemble of perturbations and is related to Re by
Re = ccT/(N � 1).

The common way of solving Eq. (9) involves the computation of
the eigenvalues to decompose the term HA0A0THT + ccT. Using the
Singular Value Decomposition [2], this term can be written as:

HA0A0T HT þ ccT ¼ UKUT ð10Þ

and its inverse matrix as:

ðHA0A0T HT þ ccTÞ�1 ¼ UK�1UT ð11Þ

Finally, Eq. (9) can be computed from:

Aþ ¼ A� þ A0ðHA0ÞT UK�1UTðD� HA�Þ ð12Þ
3. Methodology

In this section, we describe the LSP–DSSAT simulations and
implementation of the EnKF. We present the convergence and
the sensitivity studies conducted, and the four sets of comparisons
mentioned in Section 1.

3.1. LSP–DSSAT simulation

The coupled LSP–DSSAT model simulated the energy and mois-
ture fluxes from planting on DoY 78, to harvest on DoY 153 during
a corn-growing season in 2004. Micrometeorological forcings for
the simulations were obtained from the observations during Mic-
roWEX-2. Initial conditions were not known during MicroWEX-2
because sensor installation was completed 7 days after planting.
The first values observed by the soil moisture and temperature
sensors were used as the initial moisture and temperature values
for the DoY 78.

3.2. Implementation and applicability of EnKF

In this study, the non-linear propagator f(�) in Eq. (1) represents
the coupled LSP–DSSAT model; x is the state vector consisting of
VSMs estimated by the LSP–DSSAT model; ut is the meteorological
forcings at time t, and h is the time-invariant model parameters in
the LSP model, shown in Table 2. The augmented state vector tech-
nique [22,30] is applied here to simultaneously assimilate states
and parameters. In this study, we assume that the MicroWEX-2
observations are unbiased, following Lorenc and Hammom [37].
The augmented state vector technique is frequently used to ac-
count for bias in the model [16]. This technique has also been
tested and applied by Baek et al. [4] and Reichle et al. [48].

The VSM observations during MicroWEX-2 were obtained from
the top 1.7 m of layer of the soil, the extended state vector xi (see
Eq. (13)) includes the imperfectly unknown parameters describing
the first layer. In this study, the second layer (1.7–2.7 m) of soil has
constant constitutive properties (see Table 2) obtained from [7],
which were assumed perfectly known and therefore not updated.
The ith member of the ensemble is expressed as

xi ¼

VSMi1

VSMi2

..

.

VSMik

/i

w0i

Ksati

ki

2
666666666666664

3
777777777777775

ð13Þ

where k represents the number of nodes of the LSP model and
/i; w0i

, Ksati
, and ki are soil parameters defined in Table 2.

Previous investigations have considered VSM observation errors
between 3% and 5% [56,49]. In Walker and Houser [56], authors con-
clude that the error should be <5%, but preferably <3%. In this paper,
the standard deviation of the error in VSM observations was 2% by
volume [6] for both synthetic and MicroWEX-2 observations. In
addition, error is considered to be Gaussian with zero mean.

The assimilation time was chosen to be 6 a.m. EST for this study,
corresponding to the current and near-future availability of remo-
tely sensed soil moisture [36,59,5].

3.3. Convergence of soil moisture estimates and sensitivity of RZSM to
model parameters

To determine the optimal number of ensemble members, we
analyzed the means and the standard deviations for an ensemble
of 8000 members. The criterion for oscillations in mean and stan-
dard deviation of VSM at 0–5 cm, the depth exhibiting highest var-
iability, in selecting the number of ensemble members for our
study was 60.001 m3/m3. Two representative days were chosen
for each of the four growth stages of corn (Table 1) to understand
the behaviour of mean and standard deviation of VSM for different
numbers of ensemble members. One day was during a precipita-
tion/irrigation event and the other was during the middle of a
dry down period.

Randomly-generated, uniformly distributed parameters, with
literature-based upper and lower bounds, were used in the EnKF.
Table 2 shows the range considered for each parameter. The use
of a uniform distribution avoids the generation of negative param-
eters. The time dependent correlations between the 16 parameters
and the RZSM estimates were examined.

3.4. Synthetic and field observations

The synthetic truth was obtained from one of the realizations
from an open-loop simulation of the LSP–DSSAT model with a ran-
domly generated parameter set. The truth was perturbed with a
Gaussian error with zero-mean and 0.02 m3/m3 standard deviation
to generate synthetic observations. The truth was not included in
the ensemble of 500 members during the assimilation by the EnKF.
The field observations were obtained from the MicroWEX-2 exper-
iment, described in Section 2.1. The Gaussian error with zero mean
and 0.02 m3/m3 standard deviation was also added to the MicroW-
EX-2 observations.

3.5. Temporal and spatial frequency for assimilation

The VSM observations were assimilated at intervals of 1-, 3-,
and 10-days. The observations obtained from five different
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depths, 0–5, 8, 32, 64, and 100 cm were assimilated in this study.
The 0–5 cm VSM represented near-surface soil moisture, compa-
rable to that derived from remote sensing measurements, and
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VSM or RZSM ¼
Xk

i¼1

VSMiDzi ð14Þ
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Table 3
Root mean square errors and differences (RMSE/D) and average standard deviations (ASD
simultaneous state–parameter estimation; S indicates state-only assimilation; 5-depths ind

Observations Scenario 1-Day 3-Day

RMSE/D ASD RMSE/D

Synthetic S–P, 0–5 cm 0.0013 0.0093 0.0024
S–P, 5-depths 0.0013 0.0055 0.0015
S, 0–5 cm 0.0050 0.0103 0.0087
S, 5-depths 0.0059 0.0096 0.0067

MicroWEX-2 S–P, 0–5 cm 0.0114 0.0064 0.0189
S–P, 5-depths 0.0063 0.0044 0.0087

Table 4
Root mean square errors and differences (RMSE/D) and average standard deviations (A
parameters estimation and assimilating VSM observations at 0–5, 8, 32, 64, and 100 cm d

Observations Depth (cm) 1-Day 3-Day

RMSE/D ASD RMSE/D

Synthetic 0–5 0.0012 0.0065 0.0024
8 0.0009 0.0063 0.0019
32 0.0009 0.0056 0.0014
64 0.0012 0.0055 0.0015
100 0.0026 0.0083 0.0033

MicroWEX-2 0–5 0.0104 0.0073 0.0123
8 0.0115 0.0083 0.0172
32 0.0071 0.0053 0.0085
64 0.0201 0.0040 0.0238
100 0.0090 0.0039 0.0144
where k indicates the total number of nodes (blocks) within 0–5 cm
or the root zone, Dzi the thickness of the ith node, and VSMi the vol-
umetric soil moisture at ith node.
120 130 140 150

RZSM and 0−5 cm

120 130 140 150

RZSM and 8 cm

120 130 140 150

RZSM and 32 cm

120 130 140 150

RZSM and 64 cm

120 130 140 150
ST) 2004

RZSM and 100 cm

at depths of 0–5, 8, 32, 64, and 100 cm during the growing season.

) of the RZSM (m3/m3) assimilating synthetic and field observations. S–P indicates
icates scenarios when VSM observations at 0–5, 8, 32, 64, and 100 cm are assimilated.

10-Day Open loop

ASD RMSE/D ASD RMSE/D ASD

0.0090 0.0019 0.0104 0.0233 0.0226
0.0049 0.0014 0.0081 0.0233 0.0226
0.0112 0.0106 0.0141 0.0233 0.0226
0.0100 0.0091 0.0123 0.0233 0.0226

0.0077 0.0274 0.0100 0.0250 0.0226
0.0056 0.0133 0.0077 0.0250 0.0226

SD) of VSM (m3/m3) at different depths in the soil profile for simultaneous state–
epths using synthetic and field observations.

10-Day Open loop

ASD RMSE/D ASD RMSE/D ASD

0.0058 0.0033 0.0098 0.0283 0.0270
0.0055 0.0028 0.0089 0.0281 0.0268
0.0050 0.0020 0.0082 0.0254 0.0242
0.0049 0.0011 0.0080 0.0200 0.0206
0.0067 0.0018 0.0105 0.0110 0.0198

0.0094 0.0137 0.0119 0.0205 0.0270
0.0083 0.0178 0.0103 0.0233 0.0268
0.0060 0.0083 0.0084 0.0167 0.0242
0.0050 0.0311 0.0073 0.0452 0.0206
0.0055 0.0204 0.0082 0.0405 0.0198
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3.6. Uncertainty in forcings

Among all the inputs/forcings to the LSP–DSSAT model, precip-
itation/irrigation observations typically have the highest errors
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Fig. 4. Means and standard deviations at depths of (a) 0–5 cm, (b) 8 cm, (c) 32 cm, (d) 64
when synthetic observations are assimilated every 3-days. These values are compared w
compared to other micrometeorological parameters. These errors
can range between 2.9% and 12.3%, depending on the duration
and the intensity of rainfall [24,11] and may also have a high im-
pact on VSM estimation. To understand the impact of errors in
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cm, (e) 100 cm, and (f) in the root zone for simultaneous state–parameter estimation
ith true values and open-loop estimates.



80 90 100 110 120 130 140 150
0

0.05
0.1

0.15
0.2

0.25

VS
M

 (m
3 /m

3 )

(a) 0−5 cm

80 90 100 110 120 130 140 150
0

0.05
0.1

0.15
0.2

0.25
0.3

VS
M

 (m
3 /m

3 )

(b) 8 cm

80 90 100 110 120 130 140 150
0

0.05
0.1

0.15
0.2

0.25
0.3

DoY (EST) 2004

VS
M

 (m
3 /m

3 )

(c) 32 cm
Updated mean VSM Mean open loop True values Ensemble spread MicroWEX−2 Obs.

80 90 100 110 120 130 140 150
0

0.05
0.1

0.15
0.2

0.25

VS
M

 (m
3 /m

3 )

(d) 64 cm

80 90 100 110 120 130 140 150
0

0.05
0.1

0.15
0.2

0.25
0.3

VS
M

 (m
3 /m

3 )

(e) 100 cm

80 90 100 110 120 130 140 150
0

0.05
0.1

0.15
0.2

0.25
0.3

DoY (EST) 2004

VS
M

 (m
3 /m

3 )

(f) Root zone
Updated mean VSM Mean open loop True values Ensemble spread MicroWEX−2 Obs.

Fig. 5. Means and standard deviations at depths of (a) 0–5 cm, (b) 8 cm, (c) 32 cm, (d) 64 cm, (e) 100 cm, and (f) in the root zone for simultaneous state–parameter estimation
when MicroWEX-2 observations are assimilated every 3-days. These values are compared with true values and open-loop estimates.
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forcings in the estimation of RZSM, we introduced a Gaussian
observation error with standard deviation equal to 12% of the ob-
served value of precipitation/irrigation during events. No errors
were introduced when there was no event.
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4. Results and discussion

4.1. Convergence of soil moisture and sensitivity of RZSM to
parameters

Fig. 1 shows the mean and standard deviations VSM at 0–5 cm
obtained using different number of members in the ensemble, dur-
ing the different growth stages for periods of precipitation and dry-
down. The mid-season shows the highest standard deviation
during the precipitation/irrigation period, while the late and repro-
ductive seasons show similar high standard deviations during the
drydown (Fig. 1c and d). When the ensemble members increase be-
yond 500, minimal changes are observed in the mean and standard
Table 5
Means and standard deviations (Std. dev.) of the four soil parameters in the LSP–DSS
observations. 5-Depths indicates scenarios when VSM observations at 0–5, 8, 32, 64, and

Observations Parameters True value Scenario 1-Day

Mean Std. dev.

Synthetic / 0.276 0–5 cm 0.2897 0.0380
5-depths 0.2785 0.0127

w0 0.6554 0–5 cm 0.5204 0.1859
5-depths 0.5561 0.1706

k 0.7572 0–5 cm 0.6545 0.1514
5-depths 0.6559 0.1143

Ksat 5.85 � 10�4 0–5 cm 6.06 � 10�4 2.37 � 10�4

5-depths 6.15 � 10�4 2.22 � 10�4

MicroWEX-2 / – 0–5 cm 0.2078 0.0269
5-depths 0.1811 0.0090

w0 – 0–5 cm 0.2235 0.1415
5-depths 0.2616 0.1507

k – 0–5 cm 0.2877 0.0838
5-depths 0.0645 0.0090

Ksat – 0–5 cm 3.09 � 10�4 1.85 � 10�4

5-depths 3.21 � 10�4 1.47 � 10�4
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Fig. 6. Cumulative distribution function (CDF) of the estimates for porosity (/), air entry
beginning (first prior distribution) and at the end (last posterior distribution) of the growi
deviation. The maximum mean VSM oscillation is 0.0005 m3/m3

and the maximum standard deviation oscillation is 0.001 m3/m3

for 500 members. In this study all simulations were conducted
using 500 members in the ensemble.

In this study, we vary the four soil parameters, viz., /, w0, k, and
Ksat, while the other 12 parameters, shown in Table 2, were set con-
stant at their previously calibrated value from Casanova and Judge
[7] because the correlation coefficients between RZSM and the
other 12 parameters in the LSP model (see Table 2) were found
to be very close zero (for e.g. 3 � 10�2).

Fig. 2 shows the lag-zero correlation coefficients between the
RZSM and the four soil parameters over the growing season. From
the figure, w0 and Ksat have similar correlations with RZSM, varying
AT model for simultaneous state–parameter estimation using synthetic and field
100 cm are assimilated.

3-Day 10-Day Open loop

Mean Std. dev. Mean Std. dev. Mean Std. dev.

0.2826 0.0372 0.2970 0.0445 0.3698 0.0967
0.2788 0.0103 0.2828 0.0205 0.3698 0.0967
0.4899 0.1956 0.4627 0.2056 0.5005 0.2744
0.5149 0.1694 0.4685 0.1857 0.5005 0.2744
0.5893 0.1675 0.5949 0.1647 0.4935 0.2372
0.6317 0.1028 0.5996 0.1178 0.4935 0.2372
5.90 � 10�4 2.46 � 10�4 5.47 � 10�4 2.69 � 10�4 5.13 � 10�4 2.80 � 10�4

6.02 � 10�4 2.50 � 10�4 5.55 � 10�4 2.57 � 10�4 5.13 � 10�4 2.80 � 10�4

0.2984 0.0372 0.3715 0.0553 0.3698 0.0967
0.2241 0.0103 0.2147 0.0181 0.3698 0.0967
0.3032 0.1646 0.2128 0.1566 0.5005 0.2744
0.7210 0.2019 0.6354 0.2054 0.5005 0.2744
0.4614 0.1490 0.6018 0.1579 0.4935 0.2372
0.0481 0.0574 0.0647 0.0655 0.4935 0.2372
3.85 � 10�4 2.18 � 10�4 4.15 � 10�4 2.35 � 10�4 5.13 � 10�4 2.80 � 10�4

4.77 � 10�4 1.95 � 10�4 3.15 � 10�4 2.03 � 10�4 5.13 � 10�4 2.80 � 10�4
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ng season of sweet corn when synthetic observations were assimilated every 3-days.
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from �0.25 to 0.1. The correlation coefficients for w0 and Ksat in-
crease (in negative magnitude) suddenly during precipitation/irri-
gation events. Fig. 3 shows the lag-zero (in-time) correlation
between RZSM and VSM at depths of 0–5, 8, 32, 64, and 100 cm
during the growing season. The RZSM is highly correlated with soil
moisture in the top 32 cm throughout the growing season, with
sudden decreases in correlation coinciding with precipitation/irri-
gation events. The correlation decreases with depth because the
soil moisture values are higher at the near-surface and are lower
in the root zone. The RZSM shows highly negative correlation val-
ues with depths below 42 cm (64 and 100 cm in Fig. 3) during early
season. As the vegetation grows, the correlations decrease and
then, become positive.

4.2. Comparison of simultaneous state–parameter estimation with
state-only estimation

Table 3 shows the average standard deviations (ASD) and the
root mean square errors (RMSE) of the RZSM for the synthetic
observations and, the ASD and the root mean square difference
(RMSD) for the MicroWEX-2 observations during the entire grow-
ing season for different assimilation scenarios. For both synthetic
and MicroWEX-2 observations, the ASD for the assimilation cases
were significantly lower, by approximately 0.0086–0.0177 m3/m3

(38–78%) than that for the open-loop simulation. It is also noted
that the magnitude of the open-loop RMSE, of 0.0233 m3/m3, is
similar to the observation error considered in this study. The
RMSEs obtained for 10-day updates are similar to Pauwels et al.
[42] and Muñoz-Sabatier et al. [41].
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Table 6
RMSE (for synthetic observations)/RMSD (for MicroWEX-2 observations) and average of th
estimates using synthetic and MicroWEX-2 observations that were assimilated daily a
precipitation/irrigation.

Observations Scenario 1-Day

RMSE/RMSD ASD

Synthetic (A) Without uncertainty 0.0013 0.005
(B) With uncertainty 0.0016 0.005

MicroWEX-2 (A) Without uncertainty 0.0063 0.004
(B) With uncertainty 0.0062 0.004
For all time-intervals of assimilation, the estimation of state–
parameters simultaneously results in lower ASD, by 0.0086–
0.0177 m3/m3 (38–78%) compared to open-loop ASD, than those
obtained for cases when only states are estimated (0.0130–
0.0086 m3/m3; 38–58%). For the simultaneous state–parameter
case, assimilation of VSM observations at five different depths
(0–5, 8, 32, 64, and 100 cm) in the root zone produces lower
ASD, by 0.003 m3/m3 (25%) compared to the cases that assimilate
only near-surface soil moisture VSM (0–5 cm) observations. For
the state-only estimation in the synthetic case, the ASD reduced
by 0.0012 m3/m3 (10%) and the RMSE by 0.001 m3/m3 (18%), when
VSM at the five depths are assimilated, compared to the case when
only 0–5 cm VSM is assimilated. This indicates that the assimila-
tion of additional VSM observations in the profile improves the
VSM estimates, similar to [15].

The RMSEs obtained for all temporal update frequencies are sig-
nificantly lower, by 0.005 m3/m3 (51%) for the simultaneous esti-
mation case than those for the state-only estimation case. When
the forcings were assumed to be known perfectly, the simulta-
neous state–parameter estimates with daily or 3-day assimilation
of VSM observations at the five depths resulted in the lowest
uncertainty in RZSM estimation.

4.3. Comparison between synthetic and MicroWEX-2 observations

4.3.1. Estimates of states (VSM)
Table 4 shows the RMSE/RMSD, and ASD for VSM estimation at

different depths using synthetic and MicroWEX-2 observations.
Estimates of RZSM using synthetic observations show similar
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(a)

120 130 140 150

(b)

120 130 140 150
(c)

ST) 2004

(a) without precipitation/irrigation uncertainties, (b) with precipitation/irrigation
pitation/irrigation uncertainties.

e standard deviation (ASD) for the RZSM estimates for simultaneous state–parameter
nd every 3 days for the two scenarios: (A) without and (B) with uncertainties in

3-Day Open loop

RMSE/RMSD ASD RMSE/RMSD ASD

5 0.0015 0.0049 0.0233 0.0226
5 0.0015 0.0068 0.0230 0.0228

4 0.0087 0.0056 0.0250 0.0226
6 0.0083 0.0057 0.0247 0.0228
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ASD as those obtained using MicroWEX-2 observations. However,
because the ‘‘perfect” model physics in the LSP–DSSAT do not fol-
low the MicroWEX-2 observations, unlike the synthetic case, the
RMSDs for MicroWEX-2 are higher than the RMSEs for synthetic
observations (see Figs. 4 and 5). VSM estimates at 0–5, 8 cm and
RZSM show the biggest differences after DoY 130 during the dry-
down periods for MicroWEX-2 observations (Fig. 5). Although the
posterior VSM estimates are close to the observations, the esti-
mates do not follow the same trend as observations during the
propagation phase. For the synthetic case, the RMSE values for
RZSM shown in Tables 3 and 4 are of the order of 2% VSM or
0.02 m3/m3 and are comparable to those obtained by Reichle
et al. [49] and Heathman et al. [26] for their assimilation of syn-
thetic near-surface soil moisture using EnKF and direct-insertion
filtering techniques, respectively. The mean VSM is close to the
true value throughout the soil profile and the prior standard devi-
ation of the estimates is lower than the error in observations for all
time intervals of assimilation (see Table 4). Similar to Reichle et al.
[49], the RMSE and ASD of the VSM at deeper layers are lower, at
0.001 (40%) and 0.001 m3/m3 (15%), respectively, compared to
those of near-surface VSM estimates (see Table 4) for synthetic
observations. This is because near-surface layers are more sensitive
to the precipitation/irrigation events than the deeper layers.

The RMSD of 0–5 cm estimates are higher, at 0.012 m3/m3 (12%
of the seasonal mean VSM), when MicroWEX-2 observations are
assimilated at the five depths throughout the soil profile, compared
to RMSE, at 0.0009 m3/m3 (7% of the seasonal mean VSM), using
synthetic observations. The mean VSM at deeper layers of 64 and
100 cm are biased high compared to the MicroWEX-2 observa-
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Fig. 8. Mean and standard deviation of RZSM estimates for simultaneous state–paramete
when assimilation was conducted every day for: (a) synthetic observations without p
irrigation uncertainties, (c) MicroWEX-2 observations without precipitation/irrigatio
uncertainties.
tions, with an RMSD of 0.0238 and 0.0144 m3/m3, respectively,
for the entire growing season (see Fig. 5 and Table 4). However,
the VSM at deeper layers matched well with synthetic observa-
tions (see Fig. 4 and Table 4), with RMSEs of 0.0015 and
0.0033 m3/m3, respectively. These differences between the esti-
mates of MicroWEX-2 and synthetic scenarios are likely due to
the assumption of homogeneous soil in the LSP–DSSAT model
and also to a very low model estimate uncertainty of about
0.0050 m3/m3 compared to observation uncertainties of
0.02 m3/m3) (see Section 3.2). However, the RZSM estimates are
not impacted by the assumption of homogeneous soil and have
similar low values of RMSDs and RMSEs for both MicroWEX-2
and synthetic scenarios. For the MicroWEX-2 scenario, RZSM esti-
mates do not follow the observations closely during dry-down
periods after DoY 130 (see Fig. 5), with the average differences be-
tween the model estimates and observations at about 0.0161 m3/
m3. A maximum difference of 0.053 m3/m3 is observed after DoY
136. The mean VSM at depths of 0–5 and 8 cm exhibit significant
differences between model estimates and observations, of 0.013
and 0.0201 m3/m3, respectively, after DoY 130. In addition, a differ-
ence of 0.0341 m3/m3 is observed at 8 cm for DoY 115–125. Such
differences are not observed in the synthetic scenarios, and are
likely due to imperfect implementation of soil and plant character-
ization in the model compared to actual field observations. Typi-
cally, land is ploughed and disced up to 30 cm at the beginning
of the growing season. This may result in heterogeneity of soil con-
stitutive properties. Assumptions of homogeneous soil in the LSP–
DSSAT model does not allow parameters to vary in the soil profile,
as necessary to match reality. Also, the DSSAT model may need to
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be updated for canopy and root distribution parameters along with
the soil parameters in the LSP model. Such insights into errors
associated with model physics during the season cannot be ob-
tained from synthetic studies.
4.3.2. Estimates of parameters
Table 5 gives the means and standard deviations of /, w0, k, and

Ksat at the end of the growth season, when synthetic and MicroW-
EX-2 observations are assimilated every 1-, 3-, and 10 days. In the
synthetic case, estimates for all the parameters are close to their
true values, for all assimilation scenarios, with a difference be-
tween estimates and true values at <20%. Fig. 6 shows the CDF of
the estimates for the four parameters at the end of the season for
synthetic observations. Parameter / estimates has a Gaussian dis-
tribution, whereas Ksat keeps a shape similar to a uniform
distribution.

In the MicroWEX-2 case, the parameter estimates are signifi-
cantly different for different assimilation scenarios; with biggest
differences for w0 and Ksat parameters. The mean values are given
in Table 5. w0 has the higher standard deviation, and / the lowest
standard deviation. Even though, these mean values seem realistic
for sandy soils, further analysis of these parameters could not be
done due to lack of knowledge of their true values.
4.4. Temporal frequency of VSM observations

We discuss the uncertainties in state and parameter estimates
for updates every 1-, 3-, and 10-days, using the synthetic case only,
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Fig. 9. Mean and standard deviation of RZSM estimates for simultaneous state–paramete
when assimilation was conducted every 3-days for: (a) synthetic observations without
irrigation uncertainties, (c) MicroWEX-2 observations without precipitation/irrigatio
uncertainties.
because these uncertainties are similar in both synthetic and Mic-
roWEX-2 cases.

4.4.1. Estimate of states (VSM)
Table 4 compares the ASDs and RMSEs of VSM in the soil profile

for dual state–parameter estimates when observations at the top
5 cm and at depths throughout the profile are assimilated every
1-, 3-, and 10-days. The ASDs are similar for both 1- and 3-day up-
dates, both being lower than that every 10-day update. The highest
ASDs are observed at the deepest layer (100 cm) and the near-sur-
face layer (0–5 cm). The near-surface VSM estimate shows a high
sensitivity to precipitation/irrigation events (see Fig. 4a).

From Fig. 4, assimilation results in a mean that is closer to the
true value in comparison to the mean VSMs for the open-loop case.
In all cases, the daily assimilation produces similar ASDs in the
VSM as the 3-day assimilation, both being lower than those ob-
tained from the 10-day assimilation. This result is in agreement
with Walker and Houser [56] where the optimal temporal observa-
tion frequency was from 1 to 5 days. Most current studies use an
assimilation interval of every 3-days, matching the interval of sa-
tellite revisit (for example, [14,12]). The lowest RMSE of
0.0013 m3/m3 (94% reduction of the open-loop RMSE) is obtained
for the case when state–parameters are simultaneously estimated
and VSM observations at different depths in the profile are assim-
ilated everyday. However, the RZSM ASD for cases when only
states are estimated, reduced marginally by 0.001 m3/m3 (10%) in
comparison with simultaneous state–parameters estimation when
near-surface observations are assimilated and the frequency of up-
dates increased from every 10 days to daily. This demonstrated
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that the RZSM uncertainty in the state-only estimation may not
improve substantially even if near-surface observations, as ob-
tained from remotely sensed measurements, are assimilated more
frequently. The ASDs and the RMSE/D of RZSM estimates are sim-
ilar for both daily and every 3-day updates with reductions from
the open loop of 77% and 95% in the ASD and RMSE, respectively
(see Table 3).

4.4.2. Estimate of parameters
For the synthetic case, 1- and 3-day updates obtain similar

parameter values, ASDs, and RMSEs, when assimilating VSM obser-
vations at the five depths within the root zone compared to those
observed when VSM observations at top 5 cm are assimilated (Ta-
ble 5). When the parameters are estimated using MicroWEX-2
observations, 1- and 3-day updates estimate different values (see
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when assimilation was conducted every day for: (a) synthetic observations at the five dep
and 64 cm, (c) MicroWEX-2 observations at the five depths of 0–5, 8, 32, 64, and 100 cm

Table 7
RMSE (for synthetic)/RMSD (for MicroWEX-2) and average of the standard deviation (AS
MicroWEX-2 observations that were assimilated daily using two depth combinations. 5-D
and 64 cm. All simulations presented here include precipitation/irrigation uncertainties.

Depth (cm) Synthetic

5-Depths 2-Depths

RMSE ASD RMSE ASD

0–5 0.0011 0.0065 0.0018 0.00
8 0.0009 0.0063 0.0015 0.00
32 0.0011 0.0056 0.0011 0.00
64 0.0015 0.0055 0.0012 0.00
100 0.0028 0.0079 0.0022 0.01
Root zone 0.0016 0.0055 0.0013 0.00
Table 5). Porosity is the only parameter whose estimates are sim-
ilar for both 1- and 3-day update, which is also the most sensitive
parameter.

4.5. Forcing uncertainties

The results discussed so far have assumed perfectly known pre-
cipitation/irrigation forcings to the LSP–DSSAT model, with the
prediction uncertainty resulting only from unknown parameters.
To understand the effect of precipitation/irrigation measurement
errors in estimates of VSM and parameters, a Gaussian error, with
standard deviation equal to 12% of precipitation/irrigation value
observed, was introduced on rainy days. Fig. 7 shows the compar-
ison of the open-loop simulation with perfect forcings and with the
case when errors in precipitation/irrigation events were intro-
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61 0.0067 0.0054 0.0091 0.0073
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60 0.0062 0.0046 0.0067 0.0061
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duced. The introduction of the errors did not change the mean
RZSM or the ensemble spread significantly.

Table 6 compares the RMSE, the RMSD, and the ASD of RZSM for
simultaneous state–parameter estimates when observations at five
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depths of 0–5 and 64 cm.
depths are assimilated every 1- and 3-days, considering errors in
precipitation/irrigation for synthetic and MicroWEX-2 observa-
tions. Figs. 8 and 9 show the means and standard deviation of
RZSM estimates for simultaneous state–parameter estimation
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using VSM observations at five depths when assimilating daily and
every 3-days, respectively, synthetic and MicroWEX-2 observa-
tions. The ASD of the RZSM estimates do not change significantly
for any of the cases, similar to the open-loop simulations. In con-
trast, introducing uncertainties in precipitation/irrigation does
not change substantially the RZSM estimates when either synthetic
or MicroWEX-2 observations were assimilated every 3 days (see
Fig. 9). The uncertainties introduced by such errors is still low at
0.0056 m3/m3 compared to errors in the observations (0.02 m3/
m3). This is particularly evident in the late and reproductive stages
when frequent irrigation was applied (Fig. 9).

4.6. Spatial (vertical) frequency of observations

As mentioned in Section 1, most of the current studies assimi-
late remotely sensed VSM observations at 0–5 cm. As discussed
in Sections 4.3 and 4.4, this study found that assimilation of VSM
at different depths in the soil profile results in significant improve-
ment in RZSM and parameter estimates. We investigated this fur-
ther and compared the results from assimilating VSM observations
at 0–5, 8, 32, 64, and 100 cm, and assimilating 0–5 and 64 cm for
both synthetic and MicroWEX-2 cases everyday. We selected the
depth combination of 0–5 and 64 cm because VSM at 0–5 cm is
minimally correlated to soil layers deeper than 64 cm in the LSP–
DSSAT model [1]. For both synthetic and MicroWEX-2 observa-
tions, the depth combinations obtain similar results for RZSM esti-
mates (see Fig. 10). The RZSM estimates show a higher RMSD for
the MicroWEX-2 observations than the RMSE obtained for the syn-
thetic observations.
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Table 7 shows the RMSE/RMSD and the ASD for the RZSM esti-
mates and VSM estimates at different depths when considering
precipitation/irrigation errors and the five and two depth combina-
tions for synthetic and MicroWEX-2 observations. For both the
synthetic and MicroWEX-2 scenarios, the RMSE/RMSD and ASD
are not significantly different in the soil moisture profile at
<0.010 m3/m3 (78% reduction of the open-loop RMSE) and
<0.008 m3/m3 (69% reduction of the open-loop ASD), respectively,
for the two depth combinations. However for MicroWEX-2 sce-
nario, for VSMs at 8 and 32 cm the RMSDs are 0.0137 (41% reduc-
tion of the open-loop RMSE) and 0.0091 m3/m3 (61% reduction of
the open-loop RMSE), respectively, when the VSM observations
at 0–5 and 64 cm are assimilated compared to 0.0109 (53% reduc-
tion of the open-loop RMSE) and 0.0067 m3/m3 (60% reduction of
the open-loop RMSE), respectively, when those at the five depths
are assimilated. In the synthetic case, the RMSE and ASD of the
VSM estimates at different depths in the soil profile are about
0.0010 m3/m3 (96% reduction of the open-loop RMSE) and
0.0055 m3/m3 (80% reduction of the open-loop RMSE), respec-
tively. In contrast, in the MicroWEX-2 case, the RMSD and ASD
range between 0.0062–0.0196 m3/m3 (30–80% reduction of the
open-loop RMSE) and 0.0042–0.0100 m3/m3 (66–85% reduction
of the open-loop ASD), respectively. The MicroWEX-2 case has
higher RMSDs and ASDs for both the five depths and the two depth
assimilation combinations compared to those for the synthetic
case. This difference is more evident for VSM estimates of 0–5
and 8 cm, where RMSD is 0.0100 m3/m3 (64% reduction of the
open-loop RMSE) for MicroWEX-2 case and is 0.0011 m3/m3 (95%
reduction of the open-loop RMSE) for synthetic case. Fig. 11 pre-
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sents the VSM estimates at different depths in the soil profile for
the synthetic and MicroWEX-2 cases when precipitation/irrigation
uncertainties are considered and two depth combination. For Mic-
roWEX-2 case, the VSM estimates at the depths of 0–5 and 8 cm
are different for the two depth combination scenarios at 0.0157
(30% reduction of the open-loop RMSE) and 0.0123 m3/m3 (50%
reduction of the open-loop RMSE), respectively. During DoY 105–
130, at depths of 0–5 and 8 cm, five-depth assimilation produces
VSM estimates closer to the MicroWEX-2 observations. At lower
depths, both depth combinations predict similar VSM estimates
during the growing season. This demonstrates that detailed profile
measurements are not necessary and two combination of depths,
near surface and deeper in the soil, provide as accurate estimates
of RZSM.

Fig. 12 shows the differences in the RZSM (DRZSM) between the
truth and the open loop; and between the truth and the case when
VSM at 0–5 and 64 cm were assimilated every day. For the Mic-
roWEX-2 case, the field observations were assumed to be the true
value. As expected, the updated RZSM estimates are closer to the
true values compared to the open loop estimates. At the end of
the season, the DRZSM for the open loop were 0.038 and
0.062 m3/m3 for the synthetic and MicroWEX-2 cases, respectively
(Fig. 12a and c). Daily updates decreased the DRZSM to 0.002 and
0.019 for synthetic and MicroWEX-2 cases, respectively (Fig. 12a
and c). The uncertainties, ASD also decreased upon assimilation
(Fig. 12b and d). The DRZSMs and the ASDs are higher immediately
after precipitation/irrigation events, primarily after DoY 130, when
MicroWEX-2 observations are assimilated compared to the syn-
thetic case. These differences could further indicate the need to up-
date canopy and root distribution parameters in the DSSAT model,
as mentioned in Section 4.3.1.
5. Summary and conclusions

In this study, an EnKF-based assimilation algorithm was imple-
mented and tested to improve RZSM estimates from the coupled
LSP–DSSAT model. The objective of this study was to use field
observations during a growing season of corn to understand the ef-
fects of simultaneous state–parameter estimation, spatial and tem-
poral frequency of updates, and forcing uncertainties on RZSM
estimates from the LSP–DSSAT model. A comparison of EnKF per-
formance using high spatio-temporal density observations from
the MicroWEX-2 experiment and synthetic observations was con-
ducted to differentiate model errors in biophysics from errors in
parameters and forcings.

The RZSM was found to be the most sensitive to four of the 12
parameters in the LSP–DSSAT model, viz., porosity (/), pore-size
index (k), air-entry pressure (w0), and saturated hydraulic conduc-
tivity (Ksat). Assimilating synthetic observations produced esti-
mates of VSM close to the true values throughout the soil profile
with an average error of about 0.2% VSM (90% reduction of the
open-loop RMSE) for the entire growing season, whereas assimilat-
ing MicroWEX-2 observations produced estimates that were
biased high from the observations in the deeper layers with an
average error of about 1.5% VSM (40% reduction of the open-loop
RMSE) in the top 32 cm. In the deeper layers, the VSM were biased
high with an average error of 2.3% VSM (50% reduction of the open-
loop RMSE) during the growing season for the MicroWEX-2 obser-
vations. This difference between VSM error for the field experi-
ment and synthetic case indicated that the field observations did
not follow the model assumptions (i.e. homogeneous soil) and/or
physics perfectly, unlike the synthetic observations.

For both synthetic and MicroWEX-2 observations, lower aver-
age ASD and RMSE were obtained during the growing season when
states and parameters were updated simultaneously than when
only states were updated. For the synthetic case, simultaneous
state–parameter updates produced consistent and accurate param-
eter estimates, with updated parameter estimates within one stan-
dard deviation of the true value, for all combinations of temporal
and spatial observation frequencies. However, the simultaneous
state–parameter estimation using MicroWEX-2 observations pro-
duced substantially different parameter estimates when using
VSM observations at five depths (0–5, 8, 32, 64, and 100 cm) than
when using only near-surface (0–5 cm) observations. This again
pointed out the possibility of unaccounted for model error due to
heterogeneous soil and vegetation conditions in the actual field
experiment. However, for state-only estimates, the RZSM ASD
reduced marginally by 0.4% VSM (30% in comparison with simulta-
neous state–parameter estimates) when near-surface observations
were incorporated and the frequency of updates increased from
every 10 days to daily. This demonstrated that the RZSM uncer-
tainty in the state-only estimation may not improve substantially
even if near-surface observations, as obtained from remotely
sensed measurements, are assimilated more frequently.

When forcings were assumed to be known perfectly, the simul-
taneous state–parameter estimates with daily or 3-day updates re-
sulted in the lowest uncertainty in RZSM estimation when VSM
observations at the five depths were assimilated. Introducing er-
rors in precipitation/irrigation forcings marginally increased the
RZSM ASD by 0.02% VSM (5%) and the RZSM RMSE/RMSD by
0.02% VSM (2%) in comparison to the perfectly-known-forcing case
using either synthetic or MicroWEX-2 observations for every
3 days assimilation, and the RZSM ASD and the RZSM RMSE/RMSD
also marginally increased to 0.02% VSM (4%) and 0.02% VSM (3%),
respectively, when observations were assimilated every day. Com-
paring different depth combinations to estimate RZSM, it was
found that VSM observations at all depths (0–5, 8, 32, 64, and
100 cm) produced similar results to using only 0–5 and 64 cm
observations. This demonstrated that detailed profile measure-
ments were not necessary in this study and a two-depth combina-
tion, one at near-surface and one deeper in the soil, provided as
similar estimates of RZSM. Remotely-sensed near-surface observa-
tions could be combined with in situ VSM observations from sites
such as the Soil Climate Analysis Network (S.C.A.N.) [51] to pro-
duce similar results.

Despite realistic uncertainties attributed to soil parameters and
precipitation/irrigation forcing, the uncertainties in VSM predic-
tions by the model were much lower than the assumed observa-
tion errors. This resulted in relatively little change in either the
mean or standard deviation of VSM estimates when spatial and
temporal observation frequency were varied. In this study, only
the errors in soil and precipitation/irrigation forcings were consid-
ered. Thus, the observed differences in EnKF performance between
synthetic and field observations may indicate errors in model bio-
physics that were not considered here, such as those in soil condi-
tions or predictions of LAI and root distribution.
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