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APPLYING GLUE FOR ESTIMATING CERES‐MAIZE GENETIC

AND SOIL PARAMETERS FOR SWEET CORN PRODUCTION

J. He,  M. D. Dukes,  J. W. Jones,  W. D. Graham,  J. Judge

ABSTRACT. Sweet corn (Zea mays L.) is one of the five most valuable vegetable crops in Florida. The application of nitrogen
fertilizer is necessary for farmers to reliably produce sweet corn. The use of crop simulation models can facilitate the
evaluation of management practices that are profitable with minimal unwanted impacts on the environment. Before using such
models in decision making, it is necessary to specify model parameters and understand the uncertainties associated with
simulating variables that are needed for decision making. The generalized likelihood uncertainty estimation (GLUE) method
was used to estimate genotype and soil parameters of the CERES‐Maize model of the Decision Support System for
Agrotechnology Transfer (DSSAT). The uncertainties in predictions for sweet corn production in northern Florida were
evaluated using the existing field corn genotype coefficient and soil parameter database contained within DSSAT and field
data collected during a series of experiments carried out in 2005 and 2006. Genotype coefficients (P1, P5, and PHINT) and
soil parameters (SLDR, SLRO, SDUL, SLLL, and SSAT) were generated using a multivariate normal distribution that
preserved the correlations between parameters. The soil parameter SLPF was not correlated with other parameters and was
generated with a uniform distribution. After parameters were estimated, the CERES‐Maize model correctly predicted the dry
matter yields, anthesis dates, and harvest dates. The mean values of these variables were close to those measured in the field,
with an average relative error of 4.4% and 2.4% for the data sets of 2005 and 2006, respectively. The calibrated CERES‐Maize
model simulated the temporal trend of leaf TKN concentration accurately during the early stage of the growth season, but
underestimated the leaf TKN concentrations during the latter half of the season. The GLUE procedure accurately estimated
soil parameters (SLLL, SDUL, and SSAT) when compared to independent measurements made in the laboratory, with an
average absolute relative error of about 8.5%. The simulated time series of soil water content adequately simulated the
observed soil water changes during both growth seasons for every layer. However, there were some large differences between
simulated and observed soil nitrate contents. In a relevant further study, the average absolute relative error between
model‐predicted and field‐estimated amounts of potential nitrogen leaching was 15.3%, which is much better than some
reported comparable studies of nitrogen leaching modeling. In the posterior distribution of estimated parameters, the
uncertainties in parameters were substantially reduced, with CV values mostly lower than 10%. The average CV value of the
parameters was reduced from 27.2% in the prior distribution to 4.6% in the posterior distribution. In general, the results of
this study showed that the CERES‐Maize model was capable of simulating sweet corn production in northern Florida and
the associated soil water content. The model can also simulate potential nitrogen leaching with acceptable accuracy. We
suggest that the model can now be used to compare different management practices relative to productivity and potential
nitrogen leaching outcomes.

Keywords. CERES‐Maize, Crop model, DSSAT, Generalized likelihood uncertainty estimation, GLUE, Parameter
estimation, Sweet corn.

weet corn (Zea mays L.) has typically ranked as one
of the five most valuable vegetable crops in Florida.
During the 2000‐2001 production seasons, sweet
corn was the second ranked vegetable crop in terms
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of area planted and fifth in terms of total value in Florida
(FASS, 2002). High amounts of nitrogen fertilizer are neces‐
sary for farmers to guarantee economic yields of sweet corn.
Between 1992 and 2006, 81% to 100% of sweet corn acreage
in Florida received an average of 2 to 10 applications of nitro‐
gen (N) seasonally. An average range of 46 to 62 kg N ha-1

was used at each application, with a statewide annual total ap‐
plication amount of 1.64 to 5.48 million kg N (USDA‐ERS,
1993; USDA‐NASS, 1995, 1999, 2003, 2007).

Nitrogen leaching from sweet corn fields is economically
and environmentally undesirable (Katyal et al., 1985; Poss
and Saragoni, 1992; Theocharopoulos et al., 1993). Nitrate
that leaches below the crop root zone represents the loss of
a valuable plant nutrient, and hence an unnecessary cost. If
nitrate enters groundwater supplies, it can also impose risks
to both human health and the environment. Consumption of
drinking water with high nitrate levels by human infants and
young livestock has been associated with methemoglobine‐
mia or blue baby syndrome. Additionally, groundwater with
high nitrate levels that discharges into sensitive surface wa‐
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ters can contribute to long‐term eutrophication of those water
bodies (Asadi et al., 2002). Thus, approaches have been pro‐
posed to protect water quality, such as the development of
best management practices (BMPs) and grower education re‐
garding sustainable fertilizer use in crop production (Florida,
1999).

Since it is expensive and time‐consuming to test manage‐
ment practices through field experiments, the use of simula‐
tion models can facilitate the evaluation of different
production practices and environments and thereby stream‐
line the decision‐making process (Rinaldi et al., 2007).
Computer‐based agronomic models are described as “quanti‐
tative schemes for predicting the growth, development, and
yield of a crop, given a set of genotype coefficients and rele‐
vant environmental variables” (Monteith, 1996). The
CERES‐Maize model (Ritchie et al., 1998) imbedded in the
Decision Support System of Agrotechnology Transfer
(DSSAT) V 4.0 (Jones and Kiniry, 1986; Tsuji et al., 1994;
Jones et al., 2003) is a well‐known crop model developed for
field corn production. This model simulates development
and yield of different varieties of corn using genotype coeffi‐
cients (Ritchie, 1998). Although this model has been used for
a wide range of varieties or hybrids of field corn around the
world (Wu et al., 1989; Steele et al., 1994; Gabrielle and
Kengni, 1996; Pang et al., 1997a, 1997b, 1998; Jagtap et al.,
1999; Asadi and Clemente, 2003), its utility for simulating
sweet corn in Florida has not been demonstrated by currently
available literature, and crop parameters were not specifical‐
ly available for sweet corn in the DSSAT database. Thus, this
study was undertaken to determine how well the CERES‐
Maize model could simulate sweet corn for use in evaluating
management  practices for production and environmental
protection goals.

The application of crop models generally requires large
amounts of data. The input data and model parameters are
rarely known with certainty, since they can be difficult to de‐
termine accurately due to the inherent variability in natural
processes, costly monitoring, or imperfections in data mea‐
surements (Wang et al., 2005). Proper estimation of model
parameters is therefore required for ensuring accurate model
predictions and good model‐based decision rules (Makowski
et al., 2002).

Traditional methods of parameter estimation have aimed
at finding an optimal set of parameter values within some par‐
ticular model structure (Mertens et al., 2004). The limitations
of the optimal parameter set concept have been discussed by
Beven and Binley (1992) and Beven (1993, 2001). They sug‐
gest that there is inherent uncertainty in parameters and that
a number of parameter sets may be equally accepted in simu‐
lating the system. Given the observations available, there
may be no rigorous basis for differentiating between these pa‐
rameter sets. Beven (1993) introduced the term “equifinal‐
ity” to address this problem. The most important implication
of the equifinality problem is the non‐uniqueness of the solu‐
tion found by an inverse modeling or calibration process.

One response to the inherent uncertainty in parameters
and the equifinality problem is to consider parameters as ran‐
dom variables and estimate their probability distributions
instead of single values. One method that does this is the gen‐
eralized likelihood uncertainty estimation (GLUE) approach
(Mertens et al., 2004), a Bayesian Monte Carlo technique
(Candela et al., 2005) that uses observed data and prior infor‐
mation about parameter distributions. A first step in the

GLUE approach is to define a prior parameter probability dis‐
tribution based on literature or expert knowledge. The prior
distribution can be, for example, a uniform distribution with
lower and upper bounds derived from expert knowledge or a
normal distribution. The second step consists of calculating
a posterior probability distribution from both the prior dis‐
tribution and available data, such as observed crop yields,
soil moisture, and biomass nutrient concentration. This pos‐
terior distribution, computed using Bayes theorem, is used to
estimate the most likely parameter set and the uncertainties
of parameters and model outputs (Makowski et al., 2006).

The objectives of this study were to estimate the genetic
coefficients and soil parameters of the CERES‐Maize model
in DSSAT with the GLUE method and to assess the uncertain‐
ties in the use of this model for simulating the growth (includ‐
ing phenology dates, dry matter yield, etc.) and nitrogen
leaching of sweet corn production in northern Florida.

MATERIALS AND METHODS
CERES‐MAIZE MODEL

Crop growth and development are simulated by the
CERES‐Maize model (V 4.0; Hoogenboom et al., 2003) with
a daily time step from planting to maturity based on physio‐
logical processes that describe the responses of maize to soil
and environmental conditions. Potential growth is dependent
on photosynthetically active radiation and its interception,
whereas actual biomass production on any day is constrained
by suboptimal temperatures, soil water deficits, and nitrogen
deficiencies (Ritchie and Godwin, 1989; Ritchie, 1998).
Since CERES‐Maize V4.0 does not directly simulate ear
fresh weight, which is the product harvest in sweet corn pro‐
duction, the question may arise whether it can be inferred
from grain dry weight that ear fresh weight at sweet corn har‐
vest can be simulated adequately. Lizaso et al. (2007) pub‐
lished a model of sweet corn growth and yield based on the
CERES‐Maize model. The version of CERES‐Maize that
they modified to create the new model was also CERES‐
Maize V4.0. This new model simulates the increase in ear dry
weight concentration ( DMC ), expressed as a fraction of ear
fresh weight, with a slope of 0.0002 per unit of thermal time.
Fresh weight of ears (FWear , g plant-1 ) is calculated as (Liza‐
so et al., 2007):

 
DMC

DW
FW ear

ear =  (1)

where DWear is the ear dry weight (g plant-1). Using the plant
population density and FWear, the model calculates total fresh
weight yield of ears (TotFW, kg ha-1). Thus, if the value of
DMC and DWear were known, the value of FWear could be
simply calculated through this equation. The work of Lizaso
et al. (2007), which was done somewhat in parallel with this
study, did a very good job of simulating sweet corn produc‐
tion in northern Florida. In this study, it was found the DMC
value at harvest of the sweet corn variety used was very stable
at about 15%. Thus, this equation was used to bridge the gap
between fresh ear yield and dry ear yield.

Generally, there are four types of input data to the CERES‐
Maize model: weather, crop, soil, and management. The
weather inputs are the daily sum of global radiation (MJ m-2),
the daily minimum and maximum air temperatures (°C), and
the daily sum of precipitation (mm) (Ritchie, 1998). In this
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Table 1. Soil parameters for the CERES‐Maize model in DSSAT.
Parameter Definition Type Mean Unit

SLLL Lower limit for plant uptake Layered 0.13 m3 m‐3

SDUL Drained upper limit Layered 0.25 m3 m‐3

SSAT Soil saturation water content Layered 0.38 m3 m‐3

SBDM Soil bulk density Layered 1.32 g cm‐3

SALB Soil albedo Single 0.13 ‐‐
SLU1 Soil evaporation limit Single 6 mm
SLRO Soil runoff curve number Single 73 ‐‐
SLDR Soil drainage rate Single 0.46 fraction d‐1

SLPF Growth reduction/fertility factor that accounts for the effects of soil 
nutrients (other than nitrogen) on daily plant growth rate.

Single 0.96 ‐‐

Table 2. Genotype coefficients for the CERES‐Maize model in DSSAT.

Parameter Definition Mean Unit

P1 Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above
8°C base temperature) during which the plant is not responsive to changes in photoperiod.

225 degree days

P2 Extent to which development is delayed (in days) for each hour increase in photoperiod above the longest
photoperiod at which development proceeds at maximum rate (which is considered to be 12.5 h).

0.52 ‐‐

P5 Thermal time from silking to harvest maturity (expressed in degree days above 8°C base temperature). 764 degree days

G2 Maximum possible number of kernels per plant. 811 ‐‐

G3 Kernel filling rate during the linear grain filling stage and under optimum conditions. 8.5 mg day‐1

PHINT Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances. 41.2 degree days

study, these data were directly obtained from the historical re‐
cords from the Florida Automated Weather Network (FAWN;
http://fawn.ifas.ufl.edu/) at the experiment site: the Plant Sci‐
ence Research and Education Unit (29.4094° N, 82.1777° W,
21 m above sea level) at the University of Florida. Required
crop management information including planting density,
row spacing, planting depth, irrigation dates and amounts,
and application of N fertilizer (Ritchie, 1998) were also ob‐
tained from the field experiment. Crop physiological param‐
eters are given in the form of genotype coefficients, which
describe physiological processes such as development and
growth for individual crop varieties. Soil parameters describe
the physical, chemical, and morphological properties of the
soil layers. Prior distributions of both field corn genotype co‐
efficients and soil parameters needed for the GLUE proce‐
dure were taken from the DSSAT database, which contains
coefficient values for a wide range of field corn varieties and
soils ranging from sand to clay.

SOIL PARAMETERS AND GENOTYPE COEFFICIENTS

The layered soil parameters SLLL, SDUL, and SSAT
(table 1) influence the amount of available water in the soil
profile. The single soil parameters SLU1, SLRO, and SLDP
influence the amount of water that infiltrates, evaporates, or
drains from the soil profile, respectively. Parameter SLPF
represents the effect of micronutrients or other unknown soil
constraints on crop growth rates. Genotype coefficients P1,
P2, and P5 (table 2) control the important phenology events,
such as anthesis and harvest dates of corn. Coefficients G2
and G3 control the yield‐related outputs, such as dry matter
yield, canopy weight, etc., whereas coefficient PHINT in‐
fluences both phenology dates and yield (Kiniry, 1991;
Kiniry and Bonhomme, 1991). In these tables, the mean val‐
ues of the parameters that were derived from DSSAT data‐
base are also listed.

FIELD EXPERIMENT
In this study, observations were obtained from the fourth

and fifth Microwave, Water, and Energy Balance Experi‐
ments, MicroWEX‐4 and ‐5 (Casanova et al., 2007; Casano‐
va et al., 2006). The experiments were conducted on a 3.65�ha
field site at the Plant Science Research and Education Unit,
the University of Florida, located near Citra, Florida.

Sweet corn of variety `Saturn SH2' was planted during
each of two experimental years on 9 March 2005 and 9 March
2006 at a depth of 3.8 cm and a planting population density
of 59,000 plants ha-1. The harvest dates were 2 June 2005 and
1 June 2006, during MicroWEX‐4 and ‐5, respectively. The
nitrogen fertilizer used in the experiment was a composite of
several nitrogen compounds (7.9% nitrate nitrogen, 7.9%
ammoniacal  nitrogen, and 16.2% urea nitrogen) and was ap‐
plied weekly by injection through the linear‐move sprinkler
irrigation system (fertigation) beginning at four weeks after
planting and ending one week before harvest. Liquid N fertil‐
izer was applied at planting at a rate of 15 kg N ha-1. There
were seven fertigation events in the entire season for both ex‐
periments, with each event including 60 kg N ha-1 for a total
of 422 kg N ha-1 over the season. Other agronomic practices,
such as potassium fertilizer, herbicide, and pesticide applica‐
tion followed the recommendations of the Institute of Food
and Agricultural Science, University of Florida (Olson and
Simonne, 2005). Daily reference evapotranspiration (ET0)
and precipitation were obtained from the FAWN at the Citra
measurement station and were used to schedule the timing
and depth of irrigation events to maintain the soil water bal‐
ance above the maximum allowable depletion, which was
50% of the calculated available water holding capacity.

The soil in the field was coarse and mapped as Lake Sand,
Candler Variant, Tavares Variant, and Millhopper Variant 1,
which mainly belong to Quartzipsamments (Entisol). To
measure soil water holding characteristics, soil samples were
collected from 24 locations at three depths (0‐15 cm,
15‐30�cm, and 30‐60 cm) throughout the field. The samples
were analyzed in the Department of Soil and Water Science,
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University of Florida. The intact soil core method was used
to measure the values of permanent wilting point (SLLL) and
field capacity (SDUL) (Klute, 1986). Soil bulk density was
also measured. The SLLL was taken as the soil moisture at
a soil pressure of 1.53 MPa, SDUL as the soil moisture at
0.01�MPa, and soil saturation (SSAT) as the soil moisture at
0 MPa (Ratliff et al., 1983). In this study, these independently
measured soil properties were compared with the estimated
soil parameter values as one way to evaluate the reliability of
the parameter estimation procedure.

During the MicroWEX field experiments, biweekly soil
samples were collected in the growth season to measure gra‐
vimetric soil water contents, and KCL extractable soil nitrate
and ammonium concentrations using the colorimetric meth‐
od (Page et al., 1982). The gravimetric soil moisture content
was converted to volumetric soil moisture content with the
measured soil bulk density. Samples were collected with an
auger at each of eight sampling locations at four depths
(0‐15�cm, 15‐30 cm, 30‐60 cm, and 60‐90 cm) in the field.
The samples were analyzed in the Department of Soil and
Water Science, University of Florida.

Biweekly crop leaf samples were collected at eight loca‐
tions that were near the soil sampling points. For each sam‐
ple, an entire plant that had an average height and size in the
sampling area was collected. The samples were stored on ice
and then processed in the lab. Total Kjeldahl nitrogen (TKN)
of leaf tissue (including both green and senesced leaf tissue)
was measured. The leaf samples were dried in an oven at a
constant temperature of 60°C for 48 h. The dry samples were
processed using the Kjeldahl procedure (Page et al., 1982) to
determine TKN concentration in the Analytical Research
Laboratory (ARL), Institute of Food and Agricultural
Sciences, University of Florida.

Fresh ear yield (including husks and cob) was measured
when the sweet corn reached fresh market maturity, about 70
to 80 days after planting. All corn ears in a sampling zone,
which consisted of a 6.1 m section of two rows near each of
eight sampling locations, were collected whether the kernels
were fully filled or not. Then the ear samples were also dried
in an oven at a constant temperature of 60°C for 48 h. Dry
matter yield was calculated according to the measured fresh
ear yield and average ear moisture. The dates and methods of
planting, tillage, irrigation, fertigation, pesticide and herbi‐
cide application, and harvest were recorded. Critical dates for
sweet corn development, such as tasseling, silking, and har‐
vest maturity, were also recorded through direct in situ ob‐
servations. Attention should be paid to definition of harvest
date in this study. Unlike field corn varieties, which are har‐
vested when the kernels are dry and fully mature (dent stage),
sweet corn is picked when it is immature (milk stage) and eat‐
en as a vegetable, rather than a grain. Thus, the maturity date
here is the harvest date, rather than the physiological maturity
date. Consequently, in the model, parameter P5 was defined
as the thermal time from silking to harvest, as shown in
table�2. The harvest date is measured by growers by watching
the ear development. Typically about 14 to 18 days are re‐

quired from pollination to edible ears, and silks will turn
brown at that time.

GLUE IMPLEMENTATION
The main steps of the GLUE procedure used in this study

were based on Beven and Binley (1992) and are summarized
as follows:

Step 1. Select the soil parameters and genotype coeffi‐
cients to be estimated with the GLUE method. A sensitivity
analysis was previously performed with the non‐interactive
and interactive one‐at‐a‐time (OAT) method (Morris, 1991)
to determine which parameters to estimate (He, 2008). This
analysis indicated that only the genotype and soil parameters
shown in table 3 significantly influenced the model outputs
of interest. These were dry matter yield (kg ha-1) and cumula‐
tive nitrogen leaching (kg ha-1), which are the two main out‐
puts of concern for future studies on best management
practices for sweet corn production. Although the values of
soil parameters SLLL, SDUL, and SSAT were measured in
independent field experiments, as mentioned before, they
were also involved in the estimation procedure. This was
done to demonstrate that the GLUE procedure could estimate
these parameters starting with a wide range of data (all soils
from the DSSAT database) in the absence of field measure‐
ments. Hence, the comparisons between actually measured
and GLUE‐estimated soil parameter values will be useful to
determine the accuracy of the GLUE method. The other soil
parameters in table 3 have to be estimated because they are
difficult to measure or are empirical values. The parameters
that were not selected for estimation were fixed at their mean
values derived from the DSSAT database (as shown in
tables�1 and 2).

Step 2. Estimate the probability distribution functions,
means, and covariance of the parameters included in table 3
from the DSSAT V 4.0 database (Hoogenboom et al., 2003).
A Jarque‐Bera normality test (Judge et al., 1982) was con‐
ducted to determine whether these parameters followed nor‐
mal distributions. Results showed that most corn genotype
coefficients and soil parameters contained within the DSSAT
database were normally distributed at a significance level of
90%. The crop genetic coefficients were correlated with each
other, and the soil parameters were correlated with each oth‐
er. It was anticipated that there was no correlation between
genetic coefficients and soil parameters. There were strong
correlations between soil parameters SLLL, SDUL, and
SSAT. For example, the correlation coefficient was 0.94 be‐
tween SLLL and SDUL, 0.58 between SLLL and SSAT, and
0.65 between SDUL and SSAT. Thus, in this study, except for
SLPF, a multivariate normal distribution was accepted and
used as the prior distribution for the selected input parame‐
ters. A uniform distribution of [0.7, 1.0] was assigned for
SLPF, where 0.7 and 1.0 were the minimum and maximum,
respectively, of SLPF in the DSSAT database. The covarian‐
ce matrix of the selected parameters calculated from the
DSSAT database (except for SLPF) is shown in table 4, which
presents the correlations among the selected input parame-

Table 3. Selected parameters and their mean values for the GLUE method based on sensitivity
analysis of predicted dry yield and cumulative nitrogen leaching (from He, 2008).

Parameter
P1

(°Cd)[a]
P5

(°Cd)
PHINT
(°Cd)

SLDR
(fraction d‐1)

SLRO
(‐‐)

SLLL
(cm3 cm‐3)

SDUL
(cm3 cm‐3)

SSAT
cm3 cm‐3)

SLPF
(‐‐)

Mean 225 764 41 0.46 73 0.13 0.25 0.38 0.96
[a] °Cd = degree day.
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Table 4. Covariance matrix of the prior distribution.
P1 P5 PHINT SLDR SLRO SDUL SLLL SSAT

P1 4562 2374 62 0 0 0 0 0
P5 2374 9679 56 0 0 0 0 0

PHINT 62 56 16 0 0 0 0 0
SLDR 0 0 0 0.036 ‐0.339 ‐0.003 ‐0.003 ‐0.005
SLRO 0 0 0 ‐0.339 132 0.314 0.236 0.259
SDUL 0 0 0 ‐0.003 0.314 0.010 0.008 0.006
SLLL 0 0 0 ‐0.003 0.236 0.008 0.007 0.005
SSAT 0 0 0 ‐0.005 0.259 0.006 0.005 0.009

ters and will be used as the prior distribution to generate ran‐
dom parameter values later.

Step 3. Generate 10,000 random parameter sets from the
prior distribution described in step 2. In this study, a Matlab
(2004) program (mvnrnd.m) was used to generate random pa‐
rameter sets. The function MVNRND (MU, SIGMA,
CASES) returns a matrix of random numbers chosen from the
multivariate  normal distribution with mean vector MU
(table�3) and covariance matrix SIGMA (table 4). CASES is
the number of rows in the matrix, or the number of random
parameter sets. The soil profile was divided into four layers:
0‐15 cm, 15‐30 cm, 30‐60 cm, and 60‐90 cm. For the layered
parameters,  such as SLLL, SDUL, and SSAT, values were as‐
signed for each layer by assuming perfect correlation among
the soil layers. In this way, only one random number is re‐
quired to be generated for the first layer, while the values of
other layers can be calculated through their correlation. For
each generated random number for a layer 1 parameter, per‐
turbations for the parameters in lower layers were calculated
as follows:

 
1

11

σ
μ−=ε i

i
x

 (2)

where �i is the perturbation, x1i is the ith generated normally
distributed random sample for a soil property for layer 1, and
�1 and �1 are the mean and standard deviation, respectively,
of the soil property of layer 1. For the soil property of layer�2,
the ith random number, x2i was calculated as:

 222 σ⋅ε+μ= iix  (3)

where �2 is the mean and �2 is the standard deviation of the
soil property of layer 2. The same approach was used to cal‐
culate the input values for all layers.

Step 4. Run the CERES‐Maize model with the 10,000
generated random parameter sets. The model runs were im‐
plemented with Matlab in this study. The soil input file
(soil.sol) and genotype input file for maize (MZCER040.cul)
were replaced with a different set of generated random pa‐
rameter values for each run. The outputs (dry yield, anthesis
date, maturity date, leaf TKN content, soil nitrate concentra‐
tion, and soil volumetric moisture) were saved after each sim‐
ulation.

Step 5. Calculate the likelihood values L(�i|Y) for the dif‐
ferent generated parameter vectors �i conditioned with ob‐
servation Y using the selected likelihood function. The
likelihood values derived from different types of observa‐
tions were then combined (for details on this procedure, see
the Likelihood Function section below).

Step 6. Calculate the probability pi of the ith parameter set
with following equation:

 ( ) ( )

( )∑
=

θ

θ=θ
N

j
i

i
i

YL

YL
p

1

|

|
 (4)

where p(�i) is the probability or likelihood weight of the ith
parameter set �i, and L(�i|Y) is the likelihood value of param‐
eter set �i.

Step 7. Use the pairs of parameter set and probability,
(�i,�pi), I = 1, ..., N, to construct the posterior distribution and
compute mean and variance of the posterior parameters with
the following equations:

 ( ) ( ) i

N

i
ip θ⋅θ=θ ∑

=1

�^
post  (5)

 ( ) ( ) ( )2

1
i

N

i
ip −θ⋅θ=θ ∑

=

�^
2

post �^
post

 (6)

where �^
post

(�) and �^
2

post(�) are the estimated mean value and
variance of the posterior distribution of parameters �, p(�i)
is the probability of the ith parameter set �i, p(�i) is the proba‐
bility calculated by equation 4, and N is the number of ran‐
dom parameter sets.

Step 8. Compare the simulated and measured model out‐
put variables and soil parameters to evaluate the ability of the
CERES‐Maize model to correctly predict parameters and
model states after the GLUE procedure. The absolute relative
error (ARE) between simulated and measured variables was
calculated for each pair of variables with equation 7 because
this measure can be used for comparing errors based on dif‐
ferent data sets and it is independent of the units of simulated
and measured variables:

 %100ARE ×
−

=
Y Y

^

Y
^

 (7)

where Y and Y
^

 are simulated and measured variable, respec‐
tively.

LIKELIHOOD FUNCTION

A likelihood function is required to calculate the likeli‐
hood value that measures the goodness‐of‐fit in comparing
observations and predictions of the model with different ran‐
dom parameter sets. A method is also needed to combine the
likelihood values derived from observations with different
units. According to He (2008), the likelihood function and
method of likelihood combination can heavily influence the
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Table 5. Simulated and measured yields, anthesis dates, harvest dates in 2005 and 2006.
Simulation Measurement

Mean SD CV (%) ARE (%) Mean SD CV (%)

2005 Yield (kg ha‐1) 2719 383 14 5.5 2878 269 9
Anthesis date (days) 53 1.3 2 3.6 51 3.4 7
Harvest date (days) 85 1.3 2 4.2 82 2.4 3
Average ‐‐ ‐‐ ‐‐ 4.4 ‐‐ ‐‐ ‐‐

2006 Yield (kg ha‐1) 3142 485 15 2.0 3206 121 4
Anthesis date (days) 51 2.4 5 0.8 51 2.2 4
Maturity date (days) 85 2.5 3 4.3 81 3.7 5
Average ‐‐ ‐‐ ‐‐ 2.4 ‐‐ ‐‐ ‐‐

(a)

(b)

Figure 1. Histogram of predicted dry matter grain yield in 2006 under (a) prior and (b) posterior distributions. Vertical line represents average field‐
measured dry yield.

(a)

(b)

Figure 2. Histogram of predicted anthesis dates in 2006 under (a) prior and (b) posterior distributions. Vertical line represents average field‐measured
anthesis date.
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(a)

(b)

Figure 3. Histogram of predicted harvest maturity dates in 2006 under (a) prior and (b) posterior distributions. Vertical line represents average field‐
measured maturity date.

Figure 4. Measured and simulated leaf TKN concentrations over the sweet corn season in 2006. Error bars are standard deviations of measurements
and simulations.

results of the GLUE procedure. Stedinger et al. (2008) criti‐
cized the use of an arbitrary likelihood function in GLUE.
The choice of a likelihood function is critical, and the func‐
tion needs to be a reasonable description of the distribution
of the model errors for the statistical inference and resulting
uncertainty and prediction intervals to be valid. He et al.
(2009) found that the Gaussian likelihood function below
(see Makowski et al., 2006) was successful in estimating pa‐
rameters for CERES‐Maize in a synthetic experiment study
and recommended its use over other functions:
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where �i is the ith parameter set, Y(�i) is the model output us‐
ing parameter set �i, O is the observation, Oj is the jth repli‐
cate of O, 2

oσ  is the variance of observations, and M is the
number of observation replicates. In this study, equation 8
was used as the likelihood function for each observation type
(dry matter yield, anthesis date, harvest date, leaf TKN con‐
centration,  soil nitrate concentration, and soil volumetric wa‐
ter content).

Dry matter yield, anthesis date (ADAT), and harvest date
(HDAT) were integrated observations, which means there
was only one observation value for each of them in the entire
growth season. Leaf TKN concentration was a temporally
variant observation. Soil nitrate concentration and volumet‐
ric moisture content were both temporally and spatially vari‐
able. Based on an analysis by He et al. (2009), a Bayesian
multiplication  method (eq. 9, from Beven and Binley, 1992)



1914 TRANSACTIONS OF THE ASABE

Table 6. Measured and estimated mean values of soil properties of the field experiment site where DSSAT parameters
SLLL, SDUL, and SSAT are permanent wilting point, field capacity, and saturated water content, respectively.

SLLL (cm3 cm‐3) SDUL (cm3 cm‐3) SSAT (cm3 cm‐3)

Measured Estimated ARE Measured Estimated ARE Measured Estimated ARE

Mean 0.051 0.060 15.0% 0.110 0.104 5.8% 0.314 0.300 4.7%
SD 0.031 0.002 ‐‐ 0.044 0.002 ‐‐ 0.07 0.021 ‐‐
CV 61% 3% ‐‐ 40% 2% ‐‐ 22% 7% ‐‐
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Figure 5. Measured and simulated soil moisture at 0‐15 cm over the sweet corn season in 2006. Error bars are standard deviations of measurements
and simulations.
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Figure 6. Measured and simulated soil moisture at 15‐30 cm over the sweet corn season in 2006. Error bars are standard deviations of measurements
and simulations.

was selected to combine likelihood values computed for dif‐
ferent type of observations. This method efficiently elimi‐
nates the parameter sets that simultaneously give good
predictions for some observations and poor predictions for
other observations (He et al., 2009):

 [ ]∏
=

θ=
K

k
ikcombined OLL

1

|  (9)

where Lcombined is the combined likelihood value, L k[�i|O]
indicates the likelihood value of the kth type of observation

conditioned with the ith parameter set �i and observation O,
and K is the number of observation types.

A two‐step GLUE procedure was conducted with the input
variables (weather and field management) and observation
data of the field experiment in 2005 and 2006. In the first step
of GLUE, the first posterior distribution of parameters was
derived from the calculated N pairs (�i, pi|i = 1, ..., N),
where �i is the ith parameter set, and pi is the calculated prob‐
ability of the ith parameter set, conditioned on the observa‐
tions O obtained in 2005. Then this first posterior distribution
was used as the new prior distribution for the second step of
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Figure 7. Measured and simulated soil nitrate content at 0‐15 cm over the sweet corn season in 2006. Error bars are standard deviations of measure‐
ments and simulations.
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Figure 8. Measured and simulated soil nitrate content at 15‐30 cm over the sweet corn season in 2006. Error bars are standard deviations of measure‐
ments and simulations.

GLUE that used the 2006 observations to create a final poste‐
rior distribution for subsequent analyses.

RESULTS AND DISCUSSION
COMPARISON OF SIMULATED AND OBSERVED CROP

VARIABLES
In general, the CERES‐Maize model predicted crop vari‐

ables in good agreement with observations using the soil and
genotype parameters estimated after two rounds of GLUE
(table 5). The calculated average absolute relative error
(ARE) value between mean values of simulated and mea‐
sured crop growth variables was 4.4% and 2.4% for the data
sets of 2005 and 2006, respectively. In 2005, the predicted
standard deviations of 383 kg ha-1, 1.3 days, and 1.3 days af‐
ter planting were 14%, 2%, and 2% of mean values of dry
matter yield, anthesis, and harvest date. In 2006, the CV val‐
ues of these output variables were 15%, 5%, and 3%, respec‐
tively.

As shown in the prior and posterior distributions of pre‐
dicted yields, anthesis, and harvest dates (figs. 1 through 3),
prediction uncertainties in these variable were significantly
reduced after application of the GLUE procedure with the
data of 2005 and 2006. For brevity, only the 2006 data are pre‐
sented, but the trends of these variables were similar in 2005.

Measurements of leaf TKN taken five times in the grow‐
ing season were compared with simulated values after esti‐
mating soil and crop parameters (fig. 4). In figure 4, the
parameter set that had the maximum likelihood value was
used to simulate the daily results shown by the solid line.
Standard deviations of the simulations based on the entire
posterior distribution of parameters are also shown by error
bars. The mean values of TKN measurements and associated
measurement standard deviations are also shown on this fig‐
ure. During the early stage of the growth season, the cali‐
brated CERES‐Maize model simulated the temporal trend of
leaf TKN concentration accurately, since the errors between
predictions and observations were not significant. However,
the calibrated model underestimated the leaf TKN concentra‐
tions during the latter half of the season. The last two mea-
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(a)

(b)

Figure 9. Histogram of predicted nitrate nitrogen leaching in 2006 under (a) prior and (b) posterior distributions.

Table 7. Fundamental statistical properties
of prior and posterior distributions.

Min. Max. Mean SD CV

Prior Distribution
P1 110 450 225 68 30%
P5 580 1000 764 99 13%

PHINT 30 50 41 4 10%
SLDR 0.00 1.00 0.46 0.19 41%
SLRO 30 95 73 12 16%
SDUL 0.09 0.47 0.26 0.10 38%
SLLL 0.02 0.35 0.14 0.08 61%
SSAT 0.23 0.70 0.39 0.09 24%
SLPF 0.70 1.00 0.96 0.11 12%

Average ‐‐ ‐‐ ‐‐ ‐‐ 27%

Posterior Distribution
P1 78 182 99 8 8%
P5 553 676 577 10 2%

PHINT 39 42 40 0.20 1%
SLDR 0.71 0.75 0.73 0.006 1%
SLRO 41 100 78 10 12%
SDUL 0.10 0.11 0.10 0.002 2%
SLLL 0.05 0.07 0.06 0.002 4%
SSAT 0.24 0.36 0.30 0.02 7%
SLPF 0.76 0.93 0.87 0.04 5%

Average ‐‐ ‐‐ ‐‐ ‐‐ 5%

sured mean values of leaf TKN were 3.02% and 2.78%, while
the simulated mean values were only 1.4% and 1.1%. Two
reasons might contribute to the difference between model
predictions and field observations. First, the CERES‐Maize
model simulates the amount of N in stover, and the N is then
portioned into leaves and stems according to the dry matter
mass of each tissue. This results in identical N concentration
in leaves and stems, which usually means underestimating N
in leaves and the contrary in stems. In addition, fertigation
events until late in the season may have maintained high leaf
N content.

COMPARISON OF SIMULATED AND OBSERVED SOIL
VARIABLES

The GLUE‐estimated soil parameters were close to the in‐
dependently measured values (table 6). For example, the
mean value of estimated SDUL in the posterior distribution
was 0.104 cm3 cm-3, while the mean measured SDUL was
0.110 cm3 cm-3, with an ARE of 5.8%. The average ARE val‐
ue for all soil water holding parameters was about 8.5%. This
result suggests that the parameters that influence soil water
holding capacity were all accurately estimated with the
GLUE procedure, even though the prior distribution con‐
tained parameter values for soils that ranged from sand to
clay. Volumetric soil water content measured on five dates
was used in the parameter estimation process. Simulated and
measured soil water of the two top soil layers (0‐15 and
15‐30�cm) were in good agreement (figs. 5 and 6). Data from
deeper layers (i.e., 30‐60 cm and 60‐90 cm) are not shown,
but the results were similar. However, there were substantial
differences between simulated and observed soil nitrate con‐
tents of the two top soil layers (0‐15 and 15‐30 cm) (figs. 7
and 8). Especially for the 0‐15 cm layer, except for the first
one, measurements were all lower than the predictions in this
layer. Unlike soil moisture, nitrate is very unstable in soil. It
is difficult to accurately measure the soil nitrate content un-
der the experimental conditions of this study. The complexity
and difficulty in the simulation of soil nitrogen dynamics
might also contribute to the discrepancy. Thus, future im‐
provements should be made to the soil N simulation module.
The mean value and standard deviation of the posterior dis‐
tribution of simulated amounts of potential nitrate nitrogen
leaching were 84.5 and 16.7 kg N ha-1, while they were 39.0
and 46.8 kg N ha-1 under the prior distribution (fig. 9). The
data of 2005 was not presented here, but the trend of this out‐
put variable was similar.

Although the uncertainty in this variable was also signifi‐
cantly reduced, we could not conclude that the model can cor‐
rectly predict the amount of nitrogen leaching in the
production system of sweet corn, since there was no direct
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(a)

(b)

Figure 10. Parameter P1: (a) prior and (b) posterior distributions. Vertical line represents estimated mean parameter value.

(a)

(b)

Figure 11. Parameter P5: (a) prior and (b) posterior distributions. Vertical line represents estimated mean parameter value.

field measurement for this variable in this study. However,
He (2008) compared the model‐predicted and field‐
estimated amounts of potential nitrogen leaching in a two‐
factor split‐plot experiment with the same sweet corn variety
and soil type. It was found that the average relative error of
the six treatments was 15.3%, which was an acceptable result
compared with some reported similar studies of soil nitrogen
leaching modeling (e.g., Wolf et al., 2005; Conrad and Foh‐
rer, 2009), where the error could be as high as 71% or more.

POSTERIOR DISTRIBUTION OF PARAMETERS

The posterior distributions of parameters represent the un‐
certainty remaining in the parameters estimated for this
study. This uncertainty depends on the parameter prior dis‐
tributions as well as measurement uncertainties used in the
GLUE procedure. It is interesting to compare the posterior
distribution of parameters with their prior distributions
(table�7),  remembering that the prior distributions were

based on parameters for many maize varieties in the DSSAT
database that vary considerably in their characteristics and
for many soils that also have a wide range of textures. In con‐
trast, the posterior distribution represents the specific soil and
maize variety in the field study. Mean parameter values in the
posterior distributions were thus considerably different from
the prior values, the ranges defined by the minimum and
maximum values were reduced, and standard deviations
were also reduced dramatically. For example, the prior mean
value of genotype parameter P1 was 225, but it changed to 99
after the GLUE procedure. The initial range [110, 450] was
narrowed to [78, 182], and the standard deviations of P1 for
the prior and posterior distributions were 68 and 8, respec‐
tively. For genotype parameter PHINT, there are many
PHINT values of 39 in the DSSAT database because, when
the parameter was externalized for the first time, available
cultivars were assigned a common PHINT value of 39. Thus,
the prior distribution and uncertainty associated with this pa-
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(a)

(b)

Figure 12. Parameter SLDR: (a) prior and (b) posterior distributions. Vertical line represents estimated mean parameter value.

(a)

(b)

Figure 13. Parameter SLRO: (a) prior and (b) posterior distributions. Vertical line represents estimated mean parameter value.

rameter might have been affected by this dominance. In the
prior distribution, the mean value of PHINT was 41.2, which
was close to 39 compared to other available values such as 45
and 48. The values of standard deviation and CV were 4% and
10%, respectively. However, in the posterior distribution, the
mean value of PHINT (40) became closer to the common
PHINT value of 39, while the values of standard deviation
and CV were significantly reduced to 0.2% and 0.5%, i.e., the
uncertainty associated with this parameter was dramatically
reduced. It can be concluded that the common PHINT value
is a valid estimation for the sweet corn cultivar used in this
study. Similar large changes were also found in other geno‐
type and soil parameters. The CV values in posterior distribu‐

tions all decreased to less than 10%, except for soil parameter
SLRO.

The GLUE procedure resulted in different prior and poste‐
rior distributions of selected parameters (P1, P5, SLDR,
SLRO, SLLL, and SDUL; figs. 10 through 15, respectively).
The vertical lines show the estimated mean values of the pa‐
rameters with the GLUE procedure. These figures reinforce
that application of the GLUE procedure significantly re‐
duced the uncertainty of model parameters and that the poste‐
rior means are good estimates of the parameters. After the
two‐step GLUE procedure, most of the posterior distribu‐
tions followed normal distributions.
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(a)

(b)

Figure 14. Parameter SLLL: (a) prior and (b) posterior distributions. Vertical line represents estimated mean parameter value.

(a)

(b)

Figure 15. Parameter SDUL: (a) prior and (b) posterior distributions. Vertical line represents estimated mean parameter value.

CONCLUSIONS
In this study, the generalized likelihood uncertainty es‐

timation (GLUE) method was used to estimate the genotype
and soil parameters of the CERES‐Maize model of DSSAT.
Genetic coefficients (P1, P5, and PHINT) and soil parameters
(SLDR, SLRO, SDUL, SLLL, and SSAT) were generated us‐
ing a multivariate normal distribution that preserved the cor‐
relations between the parameters. The soil parameter SLPF
was not correlated with other parameters and was generated
with a uniform distribution.

After parameters were estimated, the CERES‐Maize
model correctly predicted the dry matter yields, anthesis
dates, and harvest dates. The mean values of these variables
were close to those measured in the field, with an average rel‐
ative error of 4.4% and 2.4% for the data sets of 2005 and
2006, respectively. During the early stage of the growth sea‐
son, the CERES‐Maize model simulated the temporal trend

of leaf TKN concentration accurately. However, the model
underestimated the leaf TKN concentrations during the latter
half of the season, which might be due to the mechanism of
N content simulation in the model and fertigation events until
late in the season.

The GLUE procedure accurately estimated soil parame‐
ters when compared with independent measurements made
in the laboratory. Errors in SLLL, SDUL, and SSAT were
0.009, 0.006, and 0.014 cm3 cm-3, respectively, an average
absolute relative error of about 8.5%. The simulated time se‐
ries of soil water content adequately simulated the observed
soil water changes during both growth seasons for every lay‐
er. However, there were some substantial differences be‐
tween simulated and observed soil nitrate contents, which
were probably both due to the complexity of soil nitrogen dy‐
namics modeling and the inaccuracy of the soil nitrate mea‐
surement techniques. Although the uncertainty in predicted
potential nitrogen leaching was also significantly reduced
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through the GLUE method, in this research it cannot be con‐
cluded that the model correctly predicted the potential nitro‐
gen leaching.

In the posterior distribution of estimated parameters, the
uncertainties  in parameters were substantially reduced, with
CV values mostly lower than 10%. The average CV value of
the parameters was reduced from 27% in the prior distribu‐
tion to 5% in the posterior distribution. In general, the results
of this study showed that the CERES‐Maize model was capa‐
ble of simulating sweet corn production in northern Florida
along with the associated soil water dynamics. The model can
also simulate potential nitrogen leaching with better accura‐
cy than some reported similar studies, although there were
some discrepancies in soil nitrogen prediction. It is suggested
that the model can be used to compare different management
practices relative to productivity and potential nitrogen
leaching outcomes.
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