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MICROWAVE REMOTE SENSING OF SOIL WATER:
RECENT ADVANCES AND ISSUES

J. Judge

ABSTRACT. Remotely sensed observations at microwave wavelengths are sensitive to spatio‐temporal changes in near‐surface
soil water. This near‐surface soil water information derived using various microwave techniques can be related to soil water
in the root zone, one of the most critical parameters in agriculture, through hydrology/crop models. This article provides a
brief review of approaches for using microwave observations and discusses some major challenges that still remain in using
these observations for soil water studies.
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oil water content in the root zone is arguably the
most important parameter in agriculture. It is a pri‐
mary driver for hydrological processes, including
evapotranspiration,  infiltration, runoff, and re‐

charge, as well as a critical factor in crop growth and yield.
Accurate estimate of water in the root‐zone is essential for
modeling hydrologic and nutrient fluxes and states in agricul‐
tural terrains and for modeling effects of water stress on
crops. Remote sensing provides observations of hydrologic
conditions at different spatio‐temporal scales. There are two
steps involved in utilizing remote sensing observations for
root‐zone soil water estimation in agricultural terrains. The
first step is to use remote sensing observations to obtain
surface/near‐surface soil water information, and the second
step is to vertically resolve or link this information to root‐
zone soil water through hydrology/crop models. Microwave
remote sensing can be highly sensitive to soil water content
in the upper few centimeters. Satellite‐based microwave ob‐
servations can provide spatial and temporal distributions of
global soil water at spatial resolutions of hundreds of meters
(radar) to tens of kilometers (radiometry), and temporal reso‐
lutions of twice daily (radiometry) to a several weeks (radar).
This article focuses on recent advances and some major chal‐
lenges in estimating root‐zone soil water using microwave
remote sensing observations of near‐surface soil water.

MICROWAVE REMOTE SENSING OF SOIL

WATER 
Remotely sensed observations in the microwave region of

the electromagnetic spectrum, particularly at wavelengths
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above the Debye relaxation of liquid water (~3 cm), are sensi‐
tive to liquid water content in the upper few centimeters of
the soil (henceforth near‐surface soil water). This sensitivity
is due to a large difference between the refractive indices of
dry soil and water at these wavelengths. The typical value of
the index for a dry soil is about 2, while that of water is close
to 9. In addition, the microwave observations are indepen‐
dent of solar radiation, clouds, and light rain, allowing for es‐
timates of soil water during day and night and ignoring
atmospheric effects (Ulaby et al., 1981). For soil water studies,
observations at wavelengths around 20 cm are ideal for radio‐
metric observations because the region falls among the lowest
protected radio astronomy bands, with minimal cosmic and ion‐
ospheric radiation (see figure 5.9 in Ulaby et al., 1981). The
electromagnetic radiation at these wavelengths has the further
advantage of penetrating dense vegetation cover.

Microwave remote sensing involves two techniques: pas‐
sive, where natural microwave emission or brightness tem‐
perature of a terrain is observed using a radiometer, and
active, where backscattered/reflected power from a terrain is
compared to the transmitted signal using a radar, as shown in
figure 1. Brightness temperature (TB) observed by radiometer
is the sum of contributions from the sky (extraterrestrial and
atmospheric,  TBsky), the soil, (TBsoil), and the vegetation
(TBveg) (Ulaby et al., 1981), as shown in figure 1a. At the
wavelength of 20 cm, TBsky of 2 to 3 K is very small and is
often ignored. TBsoil is a function of emissivity (e) and the ef‐
fective temperature of the soil. Soil emissivity is given by e�=
1 - R, where R is the hemispherical‐directional reflectivity of
the soil at microwave wavelengths. For a soil whose surface
is smooth with respect to microwave wavelengths, R is the fa‐
miliar Fresnel reflectivity, which is dependent on refractive
index and incidence angle. This dependence of soil water on
the index of refraction is the basis for microwave radiome‐
try's sensitivity to soil water. TBveg is a function of canopy
temperature,  opacity, and scattering properties.

Power received (Pr) by radar depends on the radar back‐
scattering cross‐section (�0) of the terrain. The cross‐section
is the sum of scattering from the soil surface (�0

soil), volume
scattering from the vegetation (�0

veg), and scattering interac‐
tion between soil and vegetation (�0

sv) (Ulaby et al., 1981),
as shown in figure 1b. The �0

soil is a function of the reflectiv-
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Figure 1. Components of microwave observations of an agricultural ter‐
rain: (a) passive (brightness temperature using a radiometer), and (b) ac‐
tive (power received using a monostatic radar).

ity of the soil and is highly sensitive to surface roughness. The
�

0
veg is a function of canopy opacity and geometry. For a ma‐

ture crop, �0
veg could comprise a significant portion of �0.

Both the passive and the active techniques measure radi‐
ation quantities that are functions of the soil's index of refrac‐
tion, and exhibit similar sensitivities to soil water (Du et al.,
2000). However, because radar backscatter is highly sensi‐
tive to soil surface roughness and volume scattering within
the vegetation, these effects produce a much larger dynamic
range in �0 than that produced due to the effects of changes
in soil water. This makes it difficult to recognize the contribu‐
tions of soil water in the backscattered signal to obtain abso‐
lute soil water estimates. For this reason, the passive
technique is more widely used for soil water studies and is
discussed in greater detail in this article.

MICROWAVE OBSERVATIONS FOR SOIL

WATER STUDIES
Three approaches are used to obtain near‐surface soil wa‐

ter information from microwave observations. The first ap‐
proach involves soil water retrieval through semi‐empirical
techniques. A widely used passive technique involves es‐
timation of TB using a semi‐empirical model, where TB is a
function of microwave emissivity and effective temperature
of the terrain (Kerr et al., 2001; Njoku et al., 2003; Wigneron
et al., 2003; Drusch et al., 2004; Crow et al., 2005). Figure 2
shows an example of near‐surface soil water derived using
such a method, where observed TB values were obtained from
an airborne radiometer (Le Vine et al., 1994) at a wavelength

Figure 2. Airborne brightness temperatures at wavelength of 20 cm and
derived soil water for the Washita '92 region in southwest Oklahoma (ob‐
tained from Jackson et al., 1995).

of 20 cm with a spatial resolution of 200 m (Jackson et al.,
1995). A widely used active technique involves developing
simple regressions between observed soil water and �0 for
test sites, and using the same relationship for “similar” terrain
(e.g., Dubois et al., 1995; Biftu and Gan, 1999; Bindlish and
Barros, 2000; Shoshany et al., 2000; Wickel et al., 2001; Ol‐
dak et al., 2003; Kelly et al., 2003; Thoma et al., 2006).

Such retrieved or derived near‐surface soil water is often
referred to as the soil moisture product or remotely sensed
soil moisture. It is used in various hydrological or crop mod‐
els for input, initialization, model evaluation, or for improve‐
ment of modeled estimates of water flux and transport, and
hence root‐zone soil water, through data assimilation
(e.g.,�Entekhabi  et al., 1994; Houser et al., 1998, Reichle et
al., 2001, 2002; Crow and Wood, 2003; Moran et al., 2004;
Drusch et al., 2005).

The second approach involves linking a microwave model
with a hydrologic (e.g., Burke, 1997; Liou et al., 1999; Judge
et al., 2007) or a crop model (e.g., Casanova et al., 2006),
where the water and temperature profiles estimated by the
latter models are used as inputs to the microwave model to
estimate TB. Because TB is sensitive to near‐surface water and
temperatures,  the hydrological and crop models are required
to provide the microwave models with the profile estimates
at high vertical resolution near the surface. Such linked mod‐
els can be calibrated and evaluated using observations of TB.
This approach allows for improvement of modeled estimates
of water flux and transport, and hence root‐zone soil water,
through assimilation of observed TB rather than assimilation
of the derived soil water product, following the first ap‐
proach.

The third approach involves combined use of co‐located/
concurrent passive and active observations through various
techniques (e.g., Chauhan and Lang, 1994; O'Neill et al.,
1996; Chauhan, 1997; Njoku et al., 2002; Entekhabi et al.,
2004; Zhan et al., 2006). Thus far, most of the techniques em‐
ploying this approach use independent passive and active re‐
trieval algorithms, as described for the first approach. The
two soil water values thus derived are compared with one
another (Entekhabi et al., 2004). In some techniques, active
observations are used to calibrate or evaluate the vegetation
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scattering model to estimate canopy opacity and scattering,
and passive retrieval algorithms use these estimates to obtain
near‐surface soil water (O'Neill et al., 1996).

CHALLENGES IN UTILIZING MICROWAVE

OBSERVATIONS FOR SOIL WATER STUDIES
Even though significant technological and algorithmic

advances have been made over the last three decades, major
challenges still exist for more effective use of microwave re‐
mote sensing for soil water studies.

TECHNOLOGICAL CHALLENGES

Lack of satellite‐borne radiometers operating at wave‐
lengths (~20 cm) that are ideal for soil water studies is a major
impediment to significant progress in the field. This lack of
long‐wavelength satellite radiometers is primarily due to the
large antenna sizes required for these radiometers to achieve
adequate spatial resolutions for climatological and hydrolog‐
ical applications (Ulaby et al., 1981; Leese et al., 2001). The
longest wavelengths for satellite‐based radiometers that can
be used for soil water studies are 4.5 and 2.8 cm (AMSR‐E)
(Kawanishi et al., 2003), providing soil water estimates at an
effective spatial resolution of 50 km. Of these, the observa‐
tions at 4.5 cm near populated regions are corrupted by radio
frequency interference from wireless communications.

Recent advances in aperture synthesis radiometry
(LeVine et al., 1994) will enable satellite‐based radiometric
measurements with similar resolutions at longer wavelengths
with a thinned array antenna. For example, the Soil Moisture
Ocean Salinity (SMOS) mission by the European Space
Agency, to be launched in 2008, will achieve 35 to 50 km spa‐
tial resolution at a wavelength of 20 cm, with approximately
4% of the number of elements required for a filled aperture
array having the same spatial resolution (Kerr et al., 2001).
In contrast, the spatial resolution of synthetic aperture radars
is hundreds of meters (Moran et al., 2004) to achieve radio‐
metric sensitivity equivalent to that of radiometers necessary
for soil water studies.

Although the spatial resolution of SMOS is adequate for
climatological  studies, it is too coarse for applications in agri‐
cultural hydrology at the field or farm scale (Leese et al.,
2001). At these scales, soil water exhibits high temporal and
spatial variability. Much research has been conducted in de‐
veloping statistical techniques to upscale and downscale
these observations (e.g., Reichle et al., 2001). Significant
technological  advances, either in hardware or in data proc‐
essing, are needed to reduce the resolution by an order of
magnitude for satellite microwave radiometry to be useful for
agricultural  applications.

CHALLENGES IN DEVELOPMENT AND VALIDATION OF

ALGORITHMS

Theoretical  relationships between microwave remote
sensing and soil water are well understood. These have been
tested through numerous combined ground‐based and air‐
borne field investigations for different terrain types at differ‐
ent spatial scales. However, the seasonal components of these
relationships require further investigations because most of
these experiments were short‐term experiments and did not
cover seasonal variations in dynamic vegetation. Under‐
standing the microwave signature of crops and its sensitivity

to soil water during growing seasons is critical to its utility in
agriculture.  Recently, several field campaigns called Micro‐
wave Water and Energy Balance Experiments (MicroWEXs)
were conducted over corn and cotton to obtain season‐long
observations of TB along with various water/energy balance
and soil/vegetation parameters (Judge et al., 2005; Casanova
et al., 2005; Tien et al., 2007). Such long‐term extensive data‐
sets are rare because very few ground‐based and airborne ra‐
diometers exist in the U.S. and worldwide for development,
calibration,  and validation of microwave algorithms. Recent‐
ly, Krajewski et al. (2006) conceptualized a remote sensing
observatory in an effort to improve such infrastructure.

Even though active observations are difficult to use for ab‐
solute estimate of soil water, they can be used to provide high‐
resolution estimates of changes in soil water over similar
vegetation conditions (Narayan et al., 2006). Algorithms that
combine active and passive observations can significantly
improve soil water estimates. They take advantage of the
complementary  nature of these observations, with radar's
high spatial resolution and high sensitivity to vegetation, and
radiometer 's high sensitivity to soil water and low sensitivity
to vegetation. Scarcity of combined active/passive observa‐
tions at various spatio‐temporal scales for development and
testing of integrated algorithms has been a major hurdle.

Integration of hydrologic and microwave observations is
another major challenge. Typically, “operational” models are
employed to provide soil water estimates, e.g., NOAH (Pan
and Mahrt, 1987) and CLM (Dai et al., 2003). These models
are highly parameterized with simplified biophysics, often
using non‐physically based parameters, to reduce the com‐
putational demands. In addition, the vertical resolution in the
soil is too coarse to fully utilize microwave observations that
are highly sensitive to water and temperature distribution in
the top few centimeters. In contrast, bio‐physically based
models that have high vertical resolution near the soil surface
are more complex, computationally intensive, and are pri‐
marily used as diagnostic models for algorithm development
and validation (e.g., Judge et al., 2003; Whitfield et al.,
2006). They use a large number of parameters that need to be
estimated using site‐specific calibration. There is a strong
need for a category of bio‐physically based models that con‐
sist of physically meaningful, measurable parameters but are
computationally  efficient enough to be used operationally.
Biophysical fidelity of these parameters is particularly essen‐
tial to ensure that each of the linked/integrated models use the
same definitions for shared inputs and parameters. Signifi‐
cant computational advances have led to development of
novel methodologies to conduct sensitivity analyses and re‐
duce the number of unconstrained parameters that need site‐
specific calibration (Gupta et al., 1999). Continued
computational  advances and collaborations of scientists with
significantly different expertise is critical to achieve opera‐
tional models that can be better integrated directly with mi‐
crowave observations (TB or �0) to obtain real‐time estimates
of root‐zone soil water.

CONCLUSIONS
Microwave remote sensing is highly sensitive to water and

temperature distribution in the top few centimeters of the
soil. This near‐surface sensitivity to soil water can be linked
to root‐zone soil water through hydrologic or crop models.
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Even though both the active and passive techniques exhibit
similar sensitivity to soil water, active signals are noisier due
to scattering within the vegetation and are difficult to use to
obtain absolute soil water estimates. Integrating active and
passive observations utilizes the complementary nature of
both the techniques and can provide better soil water esti‐
mates. Scarcity of ground‐based and airborne active/passive
sensors and lack of satellite‐borne sensors with optimum
wavelength and spatial resolution for soil water studies are
major impediments to significant progress in the field, in‐
cluding development and validation of algorithms.
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