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CALIBRATION OF THE CERES-MAIZE MODEL FOR LINKAGE

WITH A MICROWAVE REMOTE SENSING MODEL

J. J. Casanova,  J. Judge,  J. W. Jones

ABSTRACT. Stored water, i.e., soil moisture in the root zone, is the most important factor governing energy and moisture fluxes
at the land surface. Crop models are typically used to estimate these fluxes and simulate crop growth and development.
Remotely sensed microwave observations can be used to improve estimates of these fluxes, biomass, and yield. This research
aims to calibrate a crop growth model, CERES-Maize, for a growing season of corn in north-central Florida. The
CERES-Maize model was extended to weather and soil conditions of the region and calibrated using data from our second
Microwave Water and Energy Balance Experiment (MicroWEX-2). The calibrated model was linked to a microwave
brightness (MB) model to estimate brightness signatures of the growing corn canopy. Overall, the CERES-Maize model
estimated realistic total biomass with a root mean square error (RMSE) of 1.1 Mg/ha and a Willmott d-index of 0.98. However,
the partitioning of total biomass into stem and leaf biomasses were under- and overestimated, respectively. LAI matched well
with the MicroWEX-2 observations with an RMSE of 0.10 and a Willmott d-index of 0.99. The model estimated realistic daily
latent heat flux with an RMSE of 42 W/m2. The soil moisture and temperature profiles of deeper soil layers matched reasonably
well with observations, with RMSE of 1% to 3.5% and 1.4 to 3.7 K, respectively. Near-surface (0-5 cm) soil moisture and
temperatures were less realistic because the hydrological processes near the surface need to be modeled on a much shorter
timestep than is allowed by the crop model. The microwave emission model was run using observed canopy and soil inputs,
as well as with the modeled canopy and soil inputs (linked crop-MB). The two methods produced similar seasonal trends in
brightness temperatures with an RMS difference of 18.50 K. However, the linked model could not capture diurnal variations
in brightness temperatures due to its daily timestep. Such integrated crop-MB models can be used for assimilation of remotely
sensed microwave brightness in future studies to improve estimates of land surface fluxes and crop growth and development.

Keywords. CERES-Maize, Land surface fluxes, Microwave remote sensing, Model calibration, Soil moisture.

oil moisture in the vadose zone is critical in deter-
mining energy and moisture fluxes at the land sur-
face, as well as in modeling effects of water stress on
crops. Crop growth models are used to simulate soil

water availability and crop development, biomass, LAI, and
yield. Increasing knowledge of biophysics in the past two de-
cades has significantly improved model parameterizations,
making the crop model estimates more realistic. However,
errors in model estimates can accumulate over time from un-
known initial conditions, uncertain parameters, and accu-
mulation of computational errors. One way to improve the
estimations of surface fluxes such as ET, biomass, LAI, and
yield is to incorporate remotely sensed data into the models.
Significant research has been conducted with a variety of re-
motely sensed data using different strategies (Delécolle et al.,
1992; Moulin et al., 1998). For example, the “forcing” strate-
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gy, in which a remotely sensed variable is substituted for the
simulated one, has been used to improve soybean and corn
model predictions (Doraiswamy et al., 2004). The “re-initial-
ization/re-parameterization” strategy, in which a model is re-
calibrated based on error between derived and simulated state
variables, was successfully employed using optical and ther-
mal infrared measurements from Landsat to derive LAI and
water stress values for corn (Maas et al., 1989).

Data assimilation using remotely sensed soil moisture that
is derived semi-empirically from microwave observations
has been used to improve surface moisture and energy fluxes
(Crow and Wood, 2003; Reichle et al., 2002; Burke et al.,
2001; Walker and Houser, 2001; Hoeben and Troch, 2000;
Lakshmi, 2000; Galantowicz et al., 2000; Houser et al., 1998;
Entekhabi et al., 1994). Microwave observations at longer
wavelengths (� > 3 cm) are highly sensitive to distribution of
near-surface soil moisture and temperature (Du et al., 2000;
Jackson and O’Neill, 1987; Jackson, 1993). At these
wavelengths, the observations are even sensitive to soil
moisture beneath a vegetation canopy with a fresh biomass
of up to ~6 kg/m2 (Schmugge and Jackson, 1991). Passive
observations are less affected by soil surface roughness and
terrain geometry than active observations. Passive micro-
wave remote sensing has been used to effectively estimate
surface soil moisture in large-scale experiments such as the
Southern Great Plains (SGP) experiments in 1997 and 1999
(Jackson et al., 1999) and the Soil Moisture Experiments
(SMEX) in 2002, 2003, and 2004 (USDA-ARS, 2004). Most
existing studies use variables that are derived from remotely
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sensed values of either radiance (brightness) or backscatter,
such as soil moisture, rather than incorporating these directly
into the models. Very few studies have linked the crop models
with a remote sensing model where remotely sensed
measurements are used directly (Bouman, 1992; van Leeu-
wen and Clevers, 1994; Prevot et al., 2003). For example,
Prevot et al. (2003) linked the STICS (Simulateur mulTIdisc-
plinaire pour les Cultures Standard) wheat model (Brisson et
al., 1998) with an empirical backscattering model, CLOUD
(Attema and Ulaby, 1978). The study found that assimilating
active microwave data improved the crop model prediction.

Our strategy is to link a crop model to a passive microwave
remote sensing model. Such integration will allow assimila-
tion of observations of microwave brightness directly into the
crop-MB model instead of assimilating semi-empirically
derived soil moisture, as used in past studies. Here, we
calibrate a crop growth model for a growing season of corn
in north-central Florida and link the calibrated model to a
physically based microwave brightness model. There are two
major corn growth models, Erosion Productivity Impact
Calculator (EPIC) (Williams et al., 1989) and CERES-Maize
(Jones and Kiniry, 1986), that simulate hydrology, nutrient
cycling, growth, and development. CERES-Maize has the
advantage of being part of the well-known DSSAT Cropping
System Model (DSSAT-CSM). DSSAT (Decision Support
System for Agrotechnology Transfer) has been widely used
for a number of years, with validated models for over
15 crops. It also allows for simulations of multi-year crop
rotations (Jones et al., 2003).

In this article, we describe the field experiment conducted
during a corn growing season in summer 2004. The field data
were used to calibrate the CERES-Maize model. We discuss
the calibration procedure and compare modeled estimates of
biomass, LAI, ET, soil moisture, and temperature profiles
with field observations. We describe a microwave brightness
(MB) model and describe its linkage with the calibrated
CERES-Maize model. We compare the brightness tempera-
tures estimated using the integrated crop-MB model with
those estimated using MB model alone with the vegetation

data from the second Microwave Water and Energy Balance
Experiment (MicroWEX-2).

MICROWEX-2
MicroWEX-2 was conducted from day of year (DoY) 78

(March 18) to DoY 154 (June 2) in 2004 by the Center for
Remote Sensing to monitor micrometeorological, soil, and
vegetation conditions as well as the microwave brightness
temperatures during a growing season for sweet corn of
variety Saturn SH2 (Judge et al., 2005). The experimental site
(fig. 1) was a 3.6 ha (9 acre) field located at the UF/IFAS Plant
Science Education and Research Unit (PSREU) in Citra,
Florida. Row spacing was 76 cm, with approximately eight
plants per square meter. Irrigation, fertigation, and pesticide
management was conducted by the research coordinator and
his team at the PSREU. The field was divided into two halves,
with different fertilizer application rates; the west side of the
field received a higher rate than the east side.

Data collected during MicroWEX-2 included soil mois-
ture, temperature and heat flux, latent and sensible heat flux,
wind speed and direction, upwelling and downwelling
shortwave and longwave radiation, precipitation, irrigation,
water table depth, and microwave brightness at 6.7 GHz (��=
4.47 cm) every 15 min. The soil moisture, heat fluxes, and
temperatures were observed at two locations in the field. Soil
moisture and temperature were observed at 2, 4, 8, 16, 32, 64,
and 100 cm using Campbell Scientific water content
reflectometers  and Vitel Hydra-probes, and thermistors and
thermocouples,  respectively. An Eddy covariance system
measured wind speed, direction, and latent and sensible heat
fluxes. A REBS CNR net radiometer measured upwelling
and downwelling shortwave and longwave radiation. An
Everest Interscience infrared sensor measured thermal
infrared temperature. Four tipping-bucket rain gauges logged
precipitation  at four locations east and west of the footprint
and at the east and west sides of the field. Water and fertilizer
were applied through a linear-move irrigation/fertigation
system. Water table depth was measured using Solinst level

Figure 1. Field setup and instrument layout during MicroWEX-2.
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loggers in a monitoring well in each quadrant. The University
of Florida C-band microwave radiometer (UFCMR) mea-
sured vertically and horizontally polarized microwave emis-
sions from a 8.54 × 8.54 m area in the northwest area of the
corn field at a height of 6.0 m. Rows were at an angle of 60°
from the north edge, to eliminate bias in brightness observa-
tions due to row effects.

In addition to continuously logged data, there were
weekly vegetation and twice-weekly soil samplings. Vegeta-
tion sampling was conducted in four areas, one in each
quadrant of the field. Samples were selected by placing a
meter stick halfway between two plants and ending the
sample at least 1 m from the starting point and halfway
between two plants (K. Boote, personal communication,
2004). The actual row length of the sample was noted. We
measured stand density, leaf number, canopy height and
width, and wet and dry weights of leaves, stems, and ears.
Two LAI measurements were taken in each sampling area
using a Licor LAI-2000 canopy analyzer. Vegetation and soil
nitrogen (as NH+

4 and NO−
3) were measured in each of the

four sampling areas. Root length density was measured in the
vadose zone at tasseling. Nitrogen was measured in each of
the four wells before and after MicroWEX-2. During soil
sampling, soil moisture and temperatures were observed
in-row and in-furrow at depths of 2, 4, and 8 cm along eight
transects at 10 to 13 locations using a Delta-T ThetaProbe soil
moisture sensor and a digital thermometer to quantify the
spatial variability of the field.

CERES-MAIZE MODEL
The CERES-Maize model is a part of the crop growth

submodule in DSSAT-CSM. DSSAT-CSM is a modular crop
simulation model with modules for soil, soil-plant-atmo-
sphere, crop development and growth, weather, manage-
ment, etc. A simulation consists of several stages: season and
run initialization, rate calculation, integration, and output
generation (Jones et al., 2003). For this calibration study, we
focused on the performances of modules that are most
significant for estimating accurate microwave signatures
when linked with an MB model. These modules (soil water
balance, soil temperature, soil-plant-atmosphere, and crop
growth and development) estimate soil moisture and temper-
ature, ET, biomass, LAI, and crop yield. The model
determines total dry biomass using the radiation use efficien-
cy method. Total solar radiation is partitioned into photosyn-
thetically active radiation (PAR), and the fraction intercepted
is calculated from LAI using Beer’s law (Thornley and
Johnson, 1990). The dry matter accumulation rate is a
product of radiation use efficiency and a conversion factor.
Maize growth and development is marked by eight events:
germination,  emergence, end of juvenile phase, floral
induction (tassel initiation), 75% silking, beginning grain
fill, maturity, and harvest. Transition from one developmen-
tal stage to the next is determined by the growing degree days
(GDD) with a base temperature of 8°C. Vegetative growth
stops on 75% silking, when reproductive growth begins in the
form of grain fill. Yield is the grain fill value at harvest.
Threshold GDD for each stage and grain fill parameters are
contained in a cultivar file.

The CERES-Maize model determines LAI by tracking the
total number of leaves and calculating a leaf area growth rate,

so that the rate of increase of LAI is the product of leaf area
growth and current leaf number. Leaf growth is partly deter-
mined by the number of degree days between successive leaf
tip appearances, called the phyllochron interval. In addition,
a leaf senescence rate is calculated based on water stress.

The soil-plant-atmosphere module estimates ET at the land
surface using either the Ritchie-modified Priestley-Taylor
(RPT) method (Ritchie, 1972) or the Penman-FAO (PFAO)
method (Doorenbos and Pruitt, 1977). The RPT method
depends only on solar radiation and temperature, while the
PFAO method accounts for wind speed and relative humidity as
well. Both methods first determine a total potential ET, which
is partitioned into potential soil evaporation and potential plant
transpiration. Potential soil evaporation is based on intercepted
solar radiation reaching the soil surface as a function of
temperature, wind speed, radiation, and humidity. Potential
plant transpiration depends on the radiation intercepted by the
canopy and temperature, wind speed, and humidity. Actual
evaporation and transpiration are determined by the minimum
of potential ET and the amount of available water. For soil
evaporation, surface soil water is the limiting factor, while for
transpiration, root water uptake is the limiting factor.

The soil is divided into ten layers, each with different
constitutive properties. Soil moisture is calculated using the
bucket method (Manabe, 1969). When an upper soil layer is
above the drained upper limit, excess flows to the one below,
in addition to computing estimates for capillary rise. Runoff
is calculated using the USDA Soil Conservation Service
runoff number method (USDA-SCS, 1972). Infiltration is
equal to excess precipitation after runoff. Soil temperature is
computed using a deep soil boundary condition and an air
temperature boundary condition. The air temperature (°C) is
calculated from the average of maximum and minimum daily
temperatures.  Soil temperature (ST) varies with soil layer (L)
as (Jones et al., 2003):
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where DT is the difference between the average of the daily
average temperatures during the previous five days and the
yearly average (°C), ZD is depth (cm), TAMP is amplitude of
yearly temperature (°C), and ALX is the difference in days
from the current day to the hottest day of the year.

MICROWAVE BRIGHTNESS MODEL
A microwave emission model simulates radiation emitted

by the terrain (i.e., brightness temperature) at a specific
wavelength (4.5 cm for our study). The brightness tempera-
ture of the terrain (TB) is same as the physical temperature of
a blackbody that would produce the observed brightness and
depends on the distribution of temperature and moisture in
the canopy and soil. The total brightness temperature is the
sum of contributions from sky, soil, and canopy, as shown in
figure 2:

 canopyBsoilBskyBB TTTT ,,, ++=  (2)

We use the theory of radiative transfer to model TB (Ulaby
et al., 1981). This simplified model accounts for non-scatter-
ing emission from sky, vegetation, and soil as:
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Figure 2. Radiative transfer paths and brightness contributions in the microwave emission model.
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where TB,sky is the physical temperature of the cosmic sky, �
is soil reflectivity, � is canopy optical depth (a measure of can-
opy transmissivity), Tsoil is the effective physical temperature
of the soil, and Tcanopy is the effective physical temperature
of the canopy. The model ignores atmospheric contribution
as this is insignificant for studies using ground-based radiom-
eters like ours. The first term in equation 3 accounts for sky
emission transmitted through the canopy, reflected by the
soil, and transmitted back through the canopy. The second
term accounts for soil emission transmitted through the cano-
py, and the third term accounts for the upwelling canopy
emission and the downwelling canopy emission reflected by
the soil and transmitted through the canopy.

Optical depth (�) is modeled as a function of vegetation
water content, Mw (kg/m2) (Schmugge and Jackson, 1991):

 wMb ⋅=τ  (4)

where b is an empirical constant (0.015). Soil reflectivity is
a function of the polarization-dependent refractive index (n)
in the microwave region and the sensor look angle (�), given
by the Fresnel equations (Ulaby et al., 1981):
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where the subscripts v and h indicate vertical and horizontal
polarization.  The refractive index of the moist soil is esti-
mated by a dielectric mixing model (Dobson et al., 1985),
which accounts for refractive indices of different soil compo-
nents.

MODEL CALIBRATION
The CERES-Maize model was ported to the Linux OS

(G. Hoogenboom, personal communication, 2004) and cali-
brated using data from MicroWEX-2. This section describes
the calibration procedure.

INITIALIZATION
CERES is the crop submodule for cereal crops, including

maize. CERES-Maize uses three files for determining
growth and development characteristics: the species file, the
ecotype file, and the cultivar file. The species file contains
defining characteristics of corn, including root growth
parameters,  seed initial conditions, nitrogen and water stress
response coefficients, nitrogen uptake parameters, base and
optimum temperatures for grain fill and photosynthesis, and
radiation and CO2 parameters governing photosynthesis. The
ecotype file specifies thermal time development, radiation
use efficiency, and light extinction coefficients for three main
types of corn. The cultivar file specifies the six cultivar
coefficients that describe the growth and development
characteristics  for different maize cultivars. These are:

P1: degree days between emergence and end of juvenile
stage.

P2: development delay for each hour increase in photo−
period past optimum photoperiod.

P5: degree days from silking to maturity.
G2: maximum possible number of kernels per plant.
G3: kernel filling rate during the linear grain filling stage

and under optimum conditions (mg/day).
PHINT: phyllochron interval, i.e., the interval in thermal

time (degree days) between leaf tip appearances.
Soil properties such as hydraulic conductivity and texture

were taken as the default values for the soil type from DSSAT
that matched closely with our field site (Millhopper fine
sand). The drained lower limit of the top nine soil layers was
set to the minimum soil moisture (0.05) observed during
MicroWEX-2. The initial soil moisture for all the layers was
set equal to 0.2. The model calibration was found to be
insensitive to the choice of initial moisture conditions
because an irrigation event at planting reset the soil moisture
profile of sandy soil.

INPUTS
Most of the inputs for the model calibration were obtained

from the MicroWEX-2 dataset. These included daily incom-
ing solar radiation, precipitation, irrigation, fertigation, and
wind speed. Maximum and minimum daily temperature and
relative humidity were obtained from the micrometeorolog-
ical dataset collected for the Agricultural Field-Scale
Irrigation Requirement Simulation (AFSIRS) study at a
nearby site at the PSREU (M. Dukes, personal communica-
tion, 2004).
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Table 1. Cultivar coefficient values in
the calibrated CERES-Maize model.

Cultivar Coefficient Value

P1 157.20
P2 1.000
P5 811.20
G1 853.00
G3 10.4

PHINT 40.33

Figure 3. Flowchart of linkage of CERES-Maize model with the micro-
wave brightness model.

METHODOLOGY
To calibrate the CERES-Maize model, a broad grid search

was employed, followed by simulated annealing in the area
of the global error minimum using the six cultivar coeffi-
cients. Each coefficient was incrementally changed, so that
a grid of possible combinations of values, within the
acceptable  ranges, was tested to minimize the errors from
biomass and LAI, the two most important canopy parameters
required by the microwave brightness model. We excluded
the LAI observation on DoY 135 for error minimization, due
to its high standard deviation, as shown in figure 4c. The error
(R) was computed as the sum of square errors, normalized by
variance (Thornley and Johnson, 1990):
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where SSEB is the sum of square errors from total biomass,
SSELAI is the sum of square errors from LAI, and �2

B and
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LAI are the variances of biomass and LAI observations, re-
spectively. The optimum combination of parameter values
found by the grid search was then used as the initial guess in
a simulated annealing optimization algorithm (Busetti,

2004). The RMSE, relative root mean square error
(RRMSE), and Willmott d-index (Willmott, 1982) were cal-
culated as for LAI and the biomass of each component,
leaves, stems, and grain:
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where n is the number of observations, Pi and Oi are the pre-
dicted and observed values, and P  and O  are the predicted
and observed means. Table 1 shows the values of the six culti-
var coefficients that minimized R in equation 7.

LINKAGE OF CERES-MAIZE AND MICROWAVE BRIGHTNESS
MODELS

The model linkage is simple, as shown in figure 3. Soil
moisture, soil temperature, air temperature, canopy biomass,
and LAI from the CERES model are used by the microwave
emission model (MB).

RESULTS AND DISCUSSION
CROP GROWTH AND DEVELOPMENT

To evaluate the CERES-Maize model for crop growth and
development,  we compared model estimates of emergence
and silking dates, biomass, and LAI to the observations
during MicroWEX-2.

The modeled and observed emergence dates were on
DoY 90 and DoY 86, respectively. Modeled anthesis day (when
75% of the corn has silked) was DoY 139, while we observed
75% silking by DoY 135. The model estimated realistic total
dry biomass using the parameters determined by the grid search,
as shown in figures 4a and 4b. The RMSE for biomass was 1.1
Mg/ha with a low RRMSE of 0.28 and a correspondingly high
Willmott d-index of 0.98, as shown in . Figure 4b shows a scatter
plot of estimated and observed total biomass. The biomass was
increasingly underestimated by the model as the season
progressed, with the maximum difference of 1.41 Mg/ha at the
end of the season. The partitioning of the modeled biomass into
leaf and stem biomass did not match the observations (fig. 4a),
as indicated by the high RMSE and RRMSE in table 2.
Partitioning of total biomass into stem biomass was underesti-
mated by the model during later vegetative stages of growth
(DoY 127 to DoY 134). The partitioning into leaf biomass was
more realistic, with a slight overestimation during later growth
stages (DoY 132 to DoY 142). The model’s estimate of the
beginning of grain fill at DoY 140 matched closely with the
observed grain fill at DoY 139 (fig. 4a). The best fit for LAI and
total biomass did not produce the best fit for grain fill. In order
to compensate for the underestimated stem biomass, grain
weight was overestimated. The model estimated realistic LAI,
as seen in figures 4c and 4d, with a low RMSE and RRMSE of
0.10 and 0.074, respectively, and a high Willmott d-index of
0.99, as shown in table 2. Figure 4d shows the scatter plot of the
model and observed LAI.
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Figure 4. (a) Comparison of the CERES-Maize estimates and the observations of biomass during MicroWEX-2, (b) scatter plot of estimated and ob-
served biomass, (c) comparison of the CERES-Maize estimates and the observations of LAI during MicroWEX-2, and (d) scatter plot of estimated and
observed LAI.

EVAPOTRANSPIRATION
To understand model estimates of energy and moisture

fluxes at the land surface, we compared the modeled daily
latent heat flux with the observations during MicroWEX-2.
We conducted four comparisons using two methods to
estimate ET, RPT, and PFAO, and two values for the canopy
light extinction coefficient (KCAN), 0.85 and 0.5 (Sau et al.,
2004). Figure 5 shows a comparison of the latent heat flux
estimates using the four methods. Even though the RMSE
values were low (~40 W/m2), the temporal distribution of
latent heat fluxes was not estimated realistically during the
growing season (fig. 5a). The latent heat fluxes were
underestimated  in the early season and overestimated
(~100 W/m2) during late season. The early season underes-
timation indicates low evaporation rates from the modeled
soil, and the late season overestimation indicates higher
transpiration rates in the modeled vegetation. The flux
estimates were not as sensitive to KCAN values as the

Table 2. Error statistics for crop growth and ET between
CERES-Maize estimates and MicroWEX-2 field observations.

Parameter RMSE RRMSE Willmott d

Total biomass (Mg/ha) 1.10 0.28 0.98
Stem biomass (Mg/ha) 1.02 0.55 0.89
Leaf biomass (Mg/ha) 0.39 0.37 0.94
Grain biomass (Mg/ha) 0.44 1.05 0.97
LAI 0.10 0.07 0.99
Latent heat flux (W/m2) 42.07 0.39 0.87

previous studies had found under water-stressed conditions
(Sau et al., 2004). Daily under- or overestimations by the
model effectively cancelled each other, so that the fit for cu-
mulative ET was better than for the daily values (fig. 5b).

SOIL MOISTURE AND TEMPERATURE

To understand the model performance regarding moisture
and energy transport in soil, we compared modeled daily soil
moisture and temperature profiles to the observed average
daily values during MicroWEX-2 (figs. 6 and 7, table 3). We
compared the average of observations at 2 and 4 cm to model
estimates of 0-5 cm, average of 8 and 16 cm observations to
the estimates of 5-15 cm, average of 16 and 32 cm
observations to the estimates of 15-30 cm, observations at
32 cm to the estimates of 30-45 cm, average of 32 and 64 cm
observations to the estimates of 45-60 cm, and average of 64
and 100 cm observations to the estimates of 60-90 cm.

The CERES-Maize model simulates moisture at daily
timesteps, while the hydrological changes near the soil
surface (0-5 cm) occur at much shorter timesteps, making it
challenging to compare model and observed near-surface soil
moisture. It is critical to understand the differences between
the observed and modeled near-surface soil moisture because
it strongly affects latent heat and sensible heat fluxes at the
land surface and also affects microwave brightness signa-
tures. Any significant errors in near-surface soil moisture
estimates will result in unrealistic flux and brightness
estimates. In figure 6a, we compare the daily moisture at
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Figure 5. Comparison of the latent heat flux estimates from CERES-Maize model using four methods with the observations during MicroWEX-2 by
(a) daily heat flux and (b) cumulative ET.

Figure 6. Comparison of the CERES-Maize volumetric soil moisture (VSM) estimates with MicroWEX-2 observations for: (a) 0-5 cm, (b) 5-15 cm,
(c) 15-30 cm, (d) 30-45 cm, (e) 45-60 cm, and (f) 60-90 cm soil layers.
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Figure 7. Comparison of the CERES-Maize soil temperature estimates with MicroWEX-2 observations for: (a) 0-5 cm, (b) 5-15 cm, (c) 15-30 cm,
(d) 30-45 cm, (e) 45-60 cm, and (f) 60-90 cm soil layers.

0-5 cm estimated by the CERES-Maize model with daily av-
erages and 15 min observations of volumetric soil moisture
(VSM) during MicroWEX-2. Deeper soil layers matched the
observed values fairly well, as suggested by their low RMSE
values in table 3, except for a 3.4% underestimation during
the entire growing season for the 15-30 cm layer. This error
is within the experimental error of the observations made by
the TDR probes.

Overall, the model did not capture the changes in soil
temperatures realistically during the growing season. It esti-
mated temperatures at depths of 15-45 cm fairly well, as
indicated by their low RMSE values in table 3. The tempera-
tures at deeper layers were underestimated throughout the
growing season, with increasing differences as the season
progressed. For the upper layers, the model did not capture the
strong fluctuations in temperature closer to the surface.
Significant errors in soil moisture and temperature profiles in
the CERES-Maize model and the high sensitivity of flux and
microwave brightness estimates to these parameters demon-
strate a need for a more accurate method for determining energy

Table 3. Error statistics for soil moisture and temperature between
CERES-Maize estimates and MicroWEX-2 field observations.

RMSE

Soil Layer Moisture (m3/m3) Temperature (K)

5-15 cm 0.0204 2.534
15-30 cm 0.0344 1.426
30-45 cm 0.0164 1.485
45-60 cm 0.0117 2.775
60-90 cm 0.0083 3.648

and moisture transport in soil at shorter timesteps, with a
higher vertical resolution in the top 5 cm of the soil.

MICROWAVE BRIGHTNESS
The MB model was used to simulate TB by: (1) using only

soil and vegetation data obtained during MicroWEX-2 and (2)
using the soil and vegetation information when linked with the
calibrated CERES-Maize model (crop-MB model). Figure 8
shows the horizontally polarized (H-pol) TB estimated follow-
ing the two methods during the growing season. Only H-pol TB
are discussed in this study because they are the most sensitive
to changes in terrain moisture (Ulaby et al., 1981). The
comparison allows us to examine the difference in brightness
temperature estimates between inputs from observed field
conditions and those from CERES-Maize, without the need for
evaluating the MB model.

The overall seasonal trend is captured by both methods:
using MicroWEX-2 inputs, and using CERES-Maize inputs
(fig. 8). The RMS difference between the two H-pol
microwave brightness outputs is 18.50 K. As the canopy
biomass increases (fig. 4a), the contribution from soil is
attenuated while the contribution from canopy emission is
increased, raising H-pol brightness temperatures. However,
the brightness estimated using the CERES inputs does not
capture the diurnal variation in brightness because of its daily
timestep. Because the microwave brightness signatures are
sensitive to near-surface soil moisture changes, as seen from
the time series plot of soil moisture (fig. 8), it is necessary to
model brightness temperatures at shorter timesteps to capture
these changes.
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Figure 8. Modeled H-pol microwave brightness using (upper plots) measured MicroWEX-2 inputs and modeled CERES inputs and (lower plot) Micro-
WEX-2 surface soil moisture.

CONCLUSION
Crop growth models can be linked to microwave bright-

ness models to utilize remotely sensed observations of
brightness temperatures for improved estimates of ET,
biomass, LAI, and yield. In this study, we developed a linked
crop-MB model to estimate the brightness temperature for a
growing corn canopy. CERES-Maize was calibrated using
field observations from MicroWEX-2 during the corn
growing season (DoY 78 to DoY 154) in 2004. The
calibration was performed by minimizing errors for LAI and
biomass, the two most important canopy parameters in
determining the microwave signature of a vegetation canopy.

Overall, the CERES-Maize model estimated total bio-
mass and LAI realistically. The partitioning of biomass into
stem, leaf, and grain fill biomasses did not match well with
the observations. The model underestimated biomass after
midseason. The latent heat flux estimates were significantly
overestimated in the early season and underestimated later in
the season. The resulting fluxes were similar for both the RPT
and PFAO methods and the two KCAN values. Soil moisture
and temperature estimates, particularly near the surface,
were not realistically modeled. The microwave brightness
model was run with inputs from both CERES-Maize and
from field observations; both ways showed the same seasonal
trend, but CERES estimated higher brightness temperatures
and failed to capture the diurnal variation of brightness
temperatures. Because the energy fluxes and microwave
brightness are highly sensitive to near-surface moisture and
temperature distributions, and CERES cannot capture diur-
nal cycles in moisture and temperature, a more realistic
energy and moisture transport module is suggested in the

CERES-Maize model before it can be linked to an MB
model.
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