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Abstract—Our point-scale Land Surface Process/Radio-
brightness (LSP/R) model for a prairie grassland in the northern
Great Plains was adapted to winter wheat-stubble within the
region of the Southern Great Plains 1997 (SGP’97) Hydrology
Experiment. The model maintains running estimates of near-
surface soil moisture and stored water in soil and vegetation
when forced by weather, and predicts the microwave brightness
of the terrain. LSP/R model predictions were compared with the
field observations recorded during SGP’97. The model captures
canopy and soil temperatures very well, with the maximum
mean and variance of the difference between the model and
field temperatures being 1.06 K and 3.28 K2, respectively. It
yields reasonable predictions for the moisture in deeper layers
of the soil, but its predictions for the moisture in the upper
layers are low by�2:3% by volume. These underpredictions of
near-surface soil moisture result in higher H-pol brightnesses
at 19 GHz than those observed.

I. INTRODUCTION

PHYSICALLY-BASED modeling of near-surface energy
and moisture fluxes is crucial for the accurate estimation

of stored water by land surface process (LSP) models and the
prediction of weather and near-term climate. However well the
surface processes are simulated by the LSP models, current
estimates of stored water will diverge from reality without the
periodic incorporation of observational data that can be related
to surface soil moisture. Microwave radiometry can provide
those observations because of its sensitivity to soil moisture
even when there is a relatively dense vegetation cover (i.e. wet
biomass that can be as large as 6 kg/mat 1.4 GHz) [15]–[17].

We have developed point-scale LSP/R models for northern
Great Plains prairie in fall and winter [8], [24]. When forced by
weather, the models maintain temporal estimates of soil mois-
ture and temperature profiles, and these profiles are used to
predict the microwave terrain brightness. Differences between
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Fig. 1. Flow diagram of interactions between the 1-dTH and the R modules.

Fig. 2. Picture showing TMRS setup at the ARM-CART Central Facility
near Lamont, OK. A truck-based microwave system with L-, S- and C-band
radiometers from NASA Goddard Space Flight Center can be seen in the
background.

the predicted and the observed brightnesses can be used to
improve the models’ estimates of stored water. Improvement
of soil moisture estimates through the assimilation of remotely-
sensed measurements, has been demonstrated [3], [9], [13],
[19]. This work describes an adaptation of our LSP/R model,
developed for prairie by Liouet al. [24], to winter wheat-
stubble. We compare the moisture and temperature predictions
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Fig. 3. Wet and dry biomass of wheat-stubble measured during two diurnal experiments from REBEX-5.

TABLE I
SOIL PROPERTIESUSED IN THE MODEL

for soil and canopy, and the 19-GHz brightness predictions
with those observed during SGP’97.

II. THE LSP/R MODEL

The LSP/R model for wheat-stubble consists of two mod-
ules: a one-dimensional coupled thermal and hydrology mod-
ule (1-dTH) and a radiobrightness module (R). When forced
by observed weather, the 1-dTH module models moisture
and energy exchanges between soil, canopy and atmosphere,
and nonisothermal moisture transport in soil and through the
canopy. The R-module predicts apparent terrain brightnesses
based upon the estimated profiles of moisture and temperatures
by the 1-dTH module. Fig. 1 shows the interactions between
the two modules.

A. 1-dTH Module

The 1-dTH module consists of a multilayered soil with a
bilayer canopy. The soil is modeled to a depth of 4 m to
capture the diurnal and seasonal variations in moisture and
temperature, and is divided into eleven standard layers with
distinct physical, thermal, and hydraulic properties. The layers
are discretized into 60 nodes, the thicknesses of which increase
with depth. Soil properties used for the upper 10 cm are given
in Table I. The canopy consists of a layer of wheat-stubble,
grass, and weeds overlying a layer of wheat-straw from the

TABLE II
VEGETATION PROPERTIESUSED IN THE MODEL

TABLE III
MEAN DIFFERENCES ANDVARIANCES BETWEEN LSP/R PREDICTIONS

AND SGP’97 OBSERVATIONS FORCANOPY AND SOIL TEMPERATURE

harvest. The canopy properties used in the model are given
in Table II.

The equations of conservation of energy and moisture
govern heat and moisture transport in soil [(1) and (2)] and
canopy [(3) and (4)] [5], [22], [24]. The module uses a forward
finite-difference method to solve these equations for moisture
and temperature in the soil and canopy [22].

(1)

(2)
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Fig. 4. Comparison of predicted and observed canopy temperatures, and soil temperatures at depths of 3, 10, 20, 40, and 60 cm.

(3)

(4)

where

total water content per unit volume (kg/m);
total heat content per unit volume (J/m);
moisture flux density (kg/m s);
heat flux density (J/m s);
total heat content per unit area of the canopy
layer (J/m);
net heat flux into the canopy layer (W/m);

total moisture content per unit area of the
canopy layer (kg/m);
density of liquid water (kg/m);
rates of precipitation, water drainage and
evaporation from the wet fraction of canopy
(m/sec), respectively.

Initial conditions for the upper 60 cm of soil moisture and
temperature profiles are obtained from SGP’97 observations.
The temperature profile for the deeper layers is estimated
from an annual model [23]. Boundary forcings at the surface
were obtained from micro-meteorological and downwelling
sky radiance observations during SGP’97. The surface bound-
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Fig. 5. Comparison of predicted and observed volumetric moisture in the soil at depths of 3, 5, 10, 15, 20, and 30 cm.

ary condition is from the energy balance among short and
longwave radiation, and sensible and latent heat exchanges
[24]. Soil retention curves are from the two-parameter junction
model by Rossi and Nimmo [2], [18] and hydraulic con-
ductivity is from the model by Mualem [21], [22]. Thermal
conductivity, as a function of soil moisture and soil geometri-
cal properties, follows the method used by DeVries [4].

B. R-Module

The R-module approximates the canopy as a cloud with a
distributed dielectric profile [24]. In our prairie model, we
assign dielectic properties to a living canopy based upon
the dual-dispersion model of Ulaby and El-Rayes [7]. In the

dual-dispersion model, water is partitioned into bound-water
(estimated by a sugar solution) and free water. It is unclear
whether this is appropriate for inactive wheat-stubble. For
simplicity, we have assumed that all water in the canopy
is free water. Our canopy parameters are given in Table II.
The soil is a smooth-surfaced, incoherent, multilayer emitter
with dielectric properties from Dobsonet al.’s four-component
mixing model [12]. Total emission at each polarization from
the wheat-stubble is

(5)
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Fig. 6. Comparison of predicted and observed 19-GHz V- and H-pol terrain brightnesses.

where

upwelling soil brightness;
reflected downwelling canopy brightness,
upwelling canopy brightness,
reflected downwelling sky brightness [24].

III. FIELD EXPERIMENTS

A. SGP’97

SGP’97 was an interdisciplinary investigation conducted
from June 18 through July 17, 1997, that covered 11 000 km
of Oklahoma. One of its major objectives was to estimate soil
moisture and temperature using remote sensing at different
spatial scales [14]. Investigators collaborated to measure and
map soil and vegetation properties; to monitor radiant fluxes,
and soil temperature and moisture profiles; and to record
weather. Microwave brightness and radar observations were
made from the ground, aircraft and satellites.

B. REBEX-5

The University of Michigan’s Microwave Geophysics group
conducted its fifth Radiobrightness Energy Balance Experi-
ment (REBEX-5) as its contribution to SGP’97. REBEX-5
provided a point temporal record of the microwave brightness
of senescent winter wheat and, after harvest, wheat-stubble
at DOE’s Atmospheric Radiation Measurement—Cloud and
Radiation Testbed (ARM-CART) Central Facility near Lam-
ont, OK [10]. Michigan’s Tower Mounted Radiometer System
(TMRS) observed dual polarized 19.35- and 37.0-GHz bright-
nesses and H-polarized 85.5-GHz brightnesses every half-hour
from a 10-m tower (Fig. 2). The radiometers duplicate the
frequencies, polarizations, and incidence angle of the Special
Sensor Microwave/Image (SSM/I). The group also measured
canopy biomass during four diurnal experiments: two with
senescent winter-wheat and two with wheat-stubble. Each
experiment consisted of weighing the wet biomass of the
canopy cut from a 900 cmplot, every 2–3 h for a 24-h
period during a precipitation-free day. Whenever there was
water on the canopy due to condensation, it was included in
the wet biomass measurement. The samples were dried at 70F
for 24 h in a laboratory and weighed again. Fig. 3 shows the
wet and dry canopy biomass measurements during the two

experiments with wheat-stubble. Because we had only one
measurement every 2–3 h, we used an average of values in the
two experiments to estimate the canopy biomass (see Table II).

IV. RESULTS AND DISCUSSION

The 1-dTH module was run from Julian day 182 through
198. There was heavy precipitation five days before the run-
period, 10 mm on day 177, and light precipitation, 3 mm, on
day 192. The module predicts soil and canopy temperatures
that match well with those observed during SGP’97 (Fig. 4).
Mean differences and variances between the predicted and the
observed temperatures are shown in Table III. The module
captures the moisture profiles in deeper layers fairly well
throughout the simulation period, but significantly under-
estimates moisture in the upper layers (0–5 cm depth) until day
190 (Fig. 5). After day 190, the moisture estimates differ from
the SGP’97 measurements by as much as 3% by volume. This
difference is within the accepted range of experimental error
during SGP’97 moisture measurements [20]. The mean differ-
ences and variances between the predicted and the observed
moisture values are given in Table IV.

The R-module was run from Julian day 182 through 191
(constrained by periods of missing brightness data after day
191). The results are shown in Fig. 6 and Table V. The
sensitivity of the 19 GHz H-pol brightnesses to soil moisture
for the given canopy biomass is approx. 2 K/% by volume,
so that a mean difference of 3.1 K in the H-pol brightnesses
translates to a 1.6% by volume error in the soil moisture.
Differences between the observed and the predicted H-pol
brightnesses may be largely due to error in the near-surface
soil moisture prediction. V-pol brightnesses are less sensitive
to soil moisture because their incidence angles are close to
the brewster angle. Some of the differences may be a result of
the smooth surface approximation in the R-module. Roughness
causes an increase in emissivity.

V. SUMMARY

We compared the predictions from our point-scale LSP/R
model for winter wheat-stubble with temperature, moisture,
and radiobrightness observations for a site within the region
of SGP’97. The model soil and canopy temperatures match
very well with the observed data, but the model soil moisture
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TABLE IV
MEAN DIFFERENCES ANDVARIANCES BETWEEN LSP/R PREDICTIONS

AND SGP’97 OBSERVATIONS FORVOLUMETRIC SOIL MOISTURE

TABLE V
MEAN DIFFERENCES ANDVARIANCES BETWEEN LSP/R PREDICTIONS

AND REBEX-5 OBSERVATIONS FOR19-GHz TERRAIN BRIGHNTESSES

levels in the upper layers are lower than those measured
in the field by 2% by volume. These underpredictions
resulted in 19 GHz H-pol brightnesses that were 3.1 K
higher than the observed.
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