

Agricultural & Biological Engineering Department

SENSOR-BASED AUTOMATION OF RESIDENTIAL IRRIGATION

Bernard Cardenas-Lailhacar and Michael D. Dukes, Ph.D., P.E.

Soil Moisture Sensor Project; Phase 1 December 14, 2006

-USA

: 58% (Avg.)

-Central Florida : 64% (Avg.) - 71%

Frigation: a substantial opportunity for residential water savings

Ways to Decrease Irrigation Applied

- Reduce irrigation window
 - Water restrictions
- Reduce the irrigated area
 - Landscape ordinances
- Optimize irrigation application

Quantify water use and turf quality on:
1) time-based tmts., with or without a rain sensor,
2) time-based tmts. compared to SMS-based tmts.

MATERIALS AND METHODS

•Location:

On campus, UF, Gainesville, FL

Soil Moisture Sensors

1: SMS Controllers 2:Timer

Set: 6 mm

Treatments

Treatment	Irrigation Frequency (days/week)	Soil Moisture Sensor Brand or Treatment Description		
SMS-Based				
1-AC	1	Acclima		
1-RB	1	Rainbird		
1-IM	1	Irrometer		
1-WW	1	Water Watcher		
2-AC	2	Acclima		
2-RB	2	Rainbird		
2-IM	2	Irrometer		
2-WW	2	Water Watcher		
7-AC	7	Acclima		
7-RB	7	Rainbird		
7-IM	7	Irrometer		
7-WW	7	Water Watcher		
<u>Time-Based</u>				
2-WRS	2	With rain sensor		
2-WORS	2	Without rain sensor		
2-DWRS	2	60% Deficit historical ET, with rain sensor		
0-NI	0	No irrigation		

Irrigation Controls

Daily and cumulative rainfall (2005).

Volumetric moisture content; 0-NI, year 2004.

VMC through 2004, treatment 7-AC. Red dots represent allowed SIC (8% of the SIC), and the red lines represent the range of VMC when the SIC were allowed.

Volumetric moisture content through time; 2-IM, year 2004.

Cumulative irrigation depth, statistical comparisons, and percent of water savings compared to 2-WORS.

Treatment	Cumulative	<u>Comparison</u> s ⁺			Water savings vs.
Heatment	depth (mm)	A	в	С	2-WORS (%)
SMS-Based					
1-AC	283				81
1-RB	281				81
1-IM	793				48
1-WW	323				79
1-Avg	420			b	
2-AC	348				77
2-RB	188				88
2-IIM	1105				27
2-WW	270				82
2-Avg	478			a	
7-AC	122				92
7- RB	147				90
7- IIM	715				53
7-WW	463				69
7-Avg	362			с	
SMS-Avg	420		b		
Time-Based					
2-WORS	1514	a			0
2-WRS	995	b			34
2-DWRS	623	c			59
Time-Avg	1044		a		

CONCLUSIONS

- No significant differences in turfgrass quality among treatments were detected
 no irrigation was necessary.
- WRS 34%< WORS → importance & benefit of rain sensor.
- **SMS savings: 69-92% (excluding brand IR).**
- SMS-based technology could result in sound environmental and economic benefits to the state.

CONCLUSIONS

- 7d/w frequency used the least amount of water, and appears to be a better strategy regarding water conservation for turfgrass irrigation in Florida's sandy soils.
- SMS-based technology could lead to a complete automation of residential irrigation systems.

- c1 schedule at 7 d/w for a whole cycle, and allow the system to decide the initiation of a SIC. cardenas, 12/11/2006
- c2 SMSs can act as RSs, detecting when sufficient rainfall has occurred, but with a better performance. cardenas, 12/12/2006

POTENTIAL FUTURE WORK

- Alternative scheduling: 7d/w with 2 or more events per day, to optimize irrigation efficiency and turf quality.
- Optimization of the controllers set point under varying soil/weather conditions.
- RSs and SMSs should be tested over a longer period of time, to test their performance through time and under different weather conditions (dry periods).

Soil Moisture Sensors

BL-5305 biSensor ™5'

BL-5315 biSensorTM Stick

Questions?