

RAIN SENSOR (RS)

• RS can override the automatic irrigation system settings when there has been sufficient rain.

REGULATIONS

- Municipalities mandates and/or cost-saving programs for the use of RSs, because they appear to be a useful tool for water conservation with a relatively low cost, easy installation, and low maintenance.
- Florida law requires a RS that is properly installed and maintained on all automatic irrigation systems installed after 1991.

OBJECTIVES

- 1. Evaluate the reliability of two commercially available expanding disk RS-types with respect to:
 - accuracy of set point with rainfall depth, and
 - number of irrigation cycles bypassed.
- 2. Quantify the amount of water that RSs could save compared to time-based irrigation schedules without RS.
- 3. Estimate the payback period of RSs at different set points.

MATERIALS AND METHODS

•Location:

On campus, UF, Gainesville, Florida

Weather Station

Daily and cumulative rainfall.

Depth of rainfall before RSs switched to bypass mode and accuracy.

Treatment	Set point (mm)	Rainfall depth (mm)	Accuracy (%)
3-MC	3	3.4	88
13-MC	13	10.0	77
25-MC	25	24.5	98
WL		1.4	[z]

[z] Because these instruments do not declare a specific set point, no accuracy can be calculated.

Cumulative number of times rain sensors switched to bypass mode; average per treatment. Different letters indicate a significant difference by Duncan's Multiple Range Test (P<0.05)

Cumulative number of times rain sensors switched to bypass mode; WL treatment, with replicates indicated by A-D.

Cumulative number of times rain sensors switched to bypass mode; 3-MC treatment, with replicates indicated by A-D.

Large rainfall events not bypassed by some MC units.

Date	Rainfall		S	
	(mm)	3-MC	13-MC	25-MC
26-Mar	29		3, 4	
1-Apr	19		3, 4	
5-May	42		3, 4	
7-Jun	17	3, 4		
8-Jun	11	3, 4		
12-Jun	20	3, 4	2, 4	
27-Jun	42			3
29-Jun	39			4
2-Jul	25	3, 4	2, 3, 4	
3-Aug	16	3, 4		
7-Aug	17	3, 4		
8-Aug	12	3, 4		
10-Aug	18	3, 4		
20-Aug	33			1, 2, 3
6-Oct	79	3, 4	3, 4	1, 2, 3, 4
17-Dec	122	3, 4	2, 4	1, 2, 3

Hours after rain stopped and sensors switched to bypass mode; treatment 3-MC.

Date	Replicate (h)			
	1	2	3	4
3-Jul				6
1-Aug			6	
21-Sep	6	4		
30-Nov			18	
10-Dec			${f X}$	
16-Dec			18	
20-Dec			X	X

X = more than 24 h.

Total potential water savings compared to a time-based treatment without a RS.

Treatment	Irrigation Depth	Water savings	
Treatment	(mm)	(mm)	(%)
No rain sensor	818	0	0
\mathbf{WL}	455	363	44
3-MC	573	245	30
13-MC	676	142	17
25-MC	793	25	3

c3

CONCLUSIONS

- MCs responded close to their set points.
- Some replicates showed an erratic behavior.
- The lower the set points on the MC the higher potential ©2 water savings.
- 25-MC not recommended in Central Florida.
- Payback period < 1 year
 - area to be irrigated, cost of water, cost of installed RS, climatic conditions, irrigation scheduling, etc.

CONCLUSIONS

- RSs useful and highly recommended tool when used by homeowners as a means to save water.
- Rain sensors should be tested over a long time period in order to understand performance through time, and under different weather conditions.

Questions?

Water cost	Payback period per treatment (years)			
$(\$/\mathbf{TG}^{\mathbf{Y}})$	WL	3-MC	13-MC	25-MC
0.5	2.6	2.2	3.7	21.2
1.0	1.3	1.1	1.9	10.6
1.5	0.9	0.7	1.2	7. 1
2.0	0.7	0.5	0.9	5.3
2.5	0.5	0.4	0.7	4.2

YTG= thousand gallons

•Assumptions:

-Irrigated surface: 1000m²

-Installed Cost : WL: \$125

MC: \$ 75