Water Smart Innovations 2008 October 8-10, Las Vegas, NV SUMMARY OF SMART CONTROLLER TESTING IN FLORIDA & LESSONS LEARNED

Michael D. Dukes, Ph.D., P.E.

University of Florida, Agricultural & Biological Eng. Dept.

Institute of Food and Agricultural Sciences (IFAS)

Development of Land in Florida

Maps from 1,000 Friends of Florida http://www.1000friendsofflorida.org/planning/2060.asp

Development of Land in Florida

Maps from 1,000 Friends of Florida http://www.1000friendsofflorida.org/planning/2060.asp

Significance of Irrigation in FL

Population served by public supply

- 5.4 million 1970
- 17 million 2004
- 20 million 2020 (est.)
- 11% U.S. new home construction in FL
- +~1,000 people/day
- FL uses the most groundwater in the U.S.
- Most new homes in FL include irrigation
- ~60% household water use for irrigation
- High quality landscapes and low water holding capacity

Irrigation is a Standard "Appliance"

Smart Irrigation Controller Technology

- Substantial wasted irrigation is due to wrong time & wrong amount of irrigation
 - Homeowner convenience issues
 - Lack of understanding of plant water needs
 - Irrigation system is an "appliance" to maintain a desired landscape

 Smart Irrigation Controllers aim to automate these decisions based on feedback from the irrigated system

Overall Objectives

Evapotranspiration (ET) based controllers

Compare irrigation applied & turf quality on SMS, ET & RS controlled irrigation to time clock irrigation

Rain sensors (RS)

Soil moisture controllers (SMS)

SMS Testing 2004-05, Normal **Rainfall Frequency** 1 d/wk four brands SMS 2 d/wk four brands SMS **3 SMS frequencies** 7 d/wk four brands SMS Time 2 d/wk with rain sensor 60% of time 2 d/wk with rain sensor Comparisons Time 2 d/wk without rain sensor Non-irrigated

Soil Moisture Control Sensors

Water Watcher

etalli224

TIME vs. SMS Control 2004+05

Treatment	TOTAL	Savings compared to 2-WORS	
	(mm)*	(%)	
2-WORS	1514	0	
2-WRS	995	34	
2-DWRS	623	59	
Sms Avg	420	72	

WRS = With Rain Sensor DWRS = 60% Deficit With Rain Sensor Avg = Average WORS = Without Rain Sensor Sms = Soil Moisture Sensors

SMS Controllers on Homes in Pinellas Co.

SMS Controllers on Homes in Pinellas Co.

Rain Sensor Testing, 2005

Expanding Disk Rain Sensor

UF FLORID

Rain Sensor Performance

Treatment	Water savings vs. WORS (%)			
WL	44			
1/8-MC	30			
1/2-MC	17			
1-MC	3			
WORS	0 3			
WORS = with	nout RS			

SMS/ET Controllers 2006-07, Drought Conditions

St. Augustinegrass testing ongoing since March 2006

72 plots
18 treatments & 4 replicates
A: Rain Sensors
B: Soil Moisture Sensors
ET Controllers

Photo May 2006, M.L. Shedd

Technology Being Tested

Soil Moisture Sensors	Rain Sensors	ET Controllers	
Lawn Logic® LL1004	Hunter Mini-Clik®	TORO Intelli-sense TIS612	
Acclima Digital TDT® RS500		RainBird ET Manager™	
■2 days/week ■3 levels of soil moisture content (Low, Medium and High)	 1, 2, or 7 days/week 2 depths of rainfall 	 2 days/week Signal from a weather station to calculate ET 	

Volumetric Water Content, Spring 2006

 Each plot monitored individually with TDR probes

Non-irrigated plotsShows rainfall eventsDry Spring Season

SMS/ET Testing Results

- Sandy soil threshold, 10% volumetric water content
- 1 d/wk may lead to poor turf quality
- Savings
 - SMS: 18-53%
 ET: 25-63%
 RS: 7-30%

ET Controller Testing, Hillsborough Co. 2006-07, Drought Conditions

- Three ET controllers:
 - T1, Weathermatic, Smartline SL800
 - T2, Toro, Intellisense TIS-612OD
 - T3, ETwater, Smart Controller 100
- T4: Timeclock with RS
- T5: 60% of T4

Hillsborough Co. Test Plots

Controller Performance Example

Hillsborough Co. Testing Results

- Savings compared to time schedule adjusted monthly & no rain sensor
- Spring: 9-30%
- Summer: 11-49%
- Fall: 15-17%
- Winter:

50-60%

SMS Implementation Example Lake Jovita, Pasco Co.

- Fall 2005: Requested variance from 50/50 county landscape ordinance
- All new homes required to have SMS irrigation control
- Fully irrigated landscapes installed under variance
- Extensive SMS installs began in 2006
- SMS controllers did not seem to be effective initially

Lake Jovita SMS Performance

Water Usage versus Net Irrigation Requirement

SMS Controller Installations

 Original "indoor" controllers installed outside

Lake Jovita Case Study

 Mapped as Arredondo, Sparr, Kendrick fine sands
 Actual soil significantly disturbed

Lake Jovita Water Use

Development Example Key Vista, Pasco Co. ~700 homes

Development Example Key Vista, Pasco Co. ~700 homes

Development Water Use Characteristics

Lake Jovita

- The 25% highest water use records result in 60% of the irrigation water
- The 50% highest water use records result in 90% of the irrigation water

Key Vista

- The 25% highest water use records result in 42% of the irrigation water
- The 50% highest water use records result in 85% of the irrigation water

Implementation Examples

Municipal Water District of Orange County

- 899 Smart Controllers (ET based) on single family homes
- 8 brands
 - 33% \rightarrow decreased use
 - 18% → increased use
 - ~50% no change
- Similar trends on commercial installations

Implementation Examples (cont'd)

San Antonio Water Systems

- No change between "water efficient homes" and comparison group
- Actual use (~170 kgal/yr) double water budget (~80 kgal/yr)

Irvine Ranch

- After pilot program ended, 50% of homeowners refused to pay controller subscription fee of \$5/month
- Statewide ET network in development
- Otay Water District
 - Nearly half of Smart Controllers not set up properly

Smart Irrigation Controller Irrigation Reduction Potential

Method	Location	Irrigation Savings	Weather	Funding agency
Time clock adjustment w/ rain sensor	Homes in Central Fla.	30%	Normal to rainy	SJRWMD
Rain sensor	Plots in Gainesville	34%	Normal to rainy	SWFWMD
		15%	Dry	
Soil moisture sensor control	Plots in Gainesville	70-90%	Normal to rainy	SWFWMD
		Up to 40%	Dry	
	Homes in Pinellas Co.	Up to 70%	Dry (1 d/wk)	SWFWMD
ET controllers	Plots in Hillsborough Co.	Up to 6o%	~Normal	Hillsborough Co./FDACS
		Up to 40%	Dry	

The Answer is NOT Only Smart Controllers

- Smart Controllers have potential
- Should be targeted to "high" water users
- Must be implemented with hands on training of contractors
- Ongoing certification/verification program should be implemented

Funding Partners

- Irrigation efficiency study
 - SJRWMD
- Soil moisture sensor research
 - Pinellas Anclote Basin Board, SWFWMD
 - Florida Dept. Ag. and Consumer Services
 - Florida Nursery Growers & Landscape Association
 - Florida Turfgrass Association
- ET controller research
 - Hillsborough County Water Dept.
 - Florida Dept. Ag. and Consumer Services
 - Florida Nursery Growers & Landscape Association
 - Florida Turfgrass Association
- Industry Partners

Questions?

mddukes@ufl.edu http://irrigation.ifas.ufl.edu