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Factorial Sampling Plans for Preliminary
Computational Experiments

Max D. Morris
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A computational model is a representation of some physical or other system of interest, first
expressed mathematically and then implemented in the form of a computer program; it may
be viewed as a function of inputs that, when evaluated, produces outputs. Motivation for this
article comes from computational models that are deterministic, complicated enough to make
classical mathematical analysis impractical and that have a moderate-to-large number of
inputs. The problem of designing computational experiments to determine which inputs have
important effects on an output is considered. The proposed experimental plans are composed
of individually randomized one-factor-at-a-time designs, and data analysis is based on the
resulting random sample of observed elementary effects, those changes in an output due solely
to changes in a particular input. Advantages of this approach include a lack of reliance on
assumptions of relative sparsity of important inputs, monotonicity of outputs with respect to
inputs, or adequacy of a low-order polynomial as an approximation to the computational
model.

KEY WORDS: Computational model; Factor screening; Latin hypercube sampling; Sen-

sitivity analysis.

In recent years the sciences and other disciplines
have come to rely on computational models as im-
portant tools in many types of investigations. Here,
the phrase computational models refers to represen-
tations of physical or other systems of interest that
are first expressed mathematically and then imple-
mented in the form of computer programs. Mete-
orological phenomena, heat transfer in engineered
structures, and global economic activity, as exam-
ples, are modeled mathematically, often in the form
of large or complicated systems of differential equa-
tions, and computer programs are written to evaluate
the outputs of interest that result from specified in-
puts.

For purposes of this article, a computational model
is viewed as a representation of a function that pro-
duces unique values of outputs when executed for
specific values of inputs. Although the function is
actually known—for example, a computer program
has been written that includes a complete implicit or
explicit definition of it—it is complicated enough
to defy classical mathematical analysis. In practice,
the behavior of the model is investigated empirically
through a computational experiment, in which a num-
ber of evaluations—that is, runs of the program at
different values of inputs—are made and some anal-
ysis is carried out on the results. The phrase “com-
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putational experiment” emphasizes parallels with the
classical “‘physical experiment.” The latter activity is
an investigation of the ‘“real world,” whereas the
former uses an invented substitute, but apart from
this, experimental goals may be quite similar. For
example, Currin, Mitchell, Morris, and Ylvisaker (in
press) and Sacks, Schiller, and Welch (1989) dis-
cussed statistically motivated procedures for pre-
dicting the output of a computational model for runs
not executed.

Often, computational models have as many as sev-
eral hundred input variables. Additionally, for com-
plicated models, runs of the computer program may
be time-consuming and hence expensive. It follows
that in the early stages of exploring a computational
model a useful experimental activity is the discovery
of which inputs are important—that is, which have
a substantial influence on the outputs. “Factor
screening” and ‘‘sensitivity analysis” are phrases
commonly used to describe this kind of experiment.

The subjects of this article are the kind of infor-
mation that might be useful in a preliminary com-
putational experiment and a class of experimental
plans for collecting that information. Experimental
plans are proposed that are composed of individually
randomized one-factor-at-a-time designs in the input
variables. For these plans, data analysis can be based
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on examination of changes in an output that are un-
ambiguously attributed to changes in individual in-
puts. Since model outputs do not contain random
error, the well-known inefficiencies of estimation
based on linear-models analyses of noisy data from
one-factor-at-a-time plans are not an issue here. Fur-
thermore, this approach has the advantage of a lack
of reliance on tacit or explicit assumptions of rela-
tively few inputs having important effects, monoto-
nicity of outputs with respect to inputs, or adequacy
of a low-order polynomial model as an approxima-
tion to the computational model.

In Section 1, a brief review of some basic ap-
proaches that have been taken to designing prelim-
inary computational experiments is presented. The
basic idea on which the proposed approach is based
is outlined in Section 2 and experimental plans, in-
cluding two examples, are presented in Sections 3
and 5. In Section 4, comparisons between these de-
signs and Latin hypercube designs are discussed.

1. NOTATION AND PREVIOUS APPROACHES

Consider a computational model for which an out-
put y is a deterministic function of k inputs denoted
by xi, x5, X3, . . ., x; of collectively by the k-element
row vector x. For given x, the model can be used to
evaluate y without error; that is, two evaluations of
y at the same x are identical. In this article, y will
be scalar valued, although most real computational
models actually produce several output variables of
interest. Alternatively, y may be thought of as a sca-
lar-valued function of several model outputs, such as
the average of some quantity that changes over sim-
ulated time. A computational experiment will consist
of a collection of n runs, or evaluations, of the model.
For a given experimental design, the ith row of the
n-by-k design matrix X is the set of input values x
for the ith run.

One common goal in a preliminary computational
experiment is the determination of which inputs are
important and so cannot reasonably be ignored in
future investigations. It is often necessary that this
be done using a limited number of runs of the model.
In both physical and computational experiments,
fractional factorial designs of resolution III or IV and
Plackett and Burman (1946) designs have been used
for this purpose. An approximating first-order linear
model can be fit to the resulting data and the im-
portance of each input assessed by the size of the
associated model coefficient, either in absolute terms
or in comparison to the size of the residuals. Since
there are no physical random quantities in this set-
ting, it is generally difficult to justify such screening
rules statistically. If the approximating model is ad-
equate, however, this approach often works well in
practice anyway. Of course, nonlinear effects and
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individual interactions cannot be detected using these
designs. The most obvious remedy to this problem
is to use a more extensive design, such as a central
composite design or a fractional factorial design of
higher resolution, so that all coefficients that may be
important in the approximating model can be indi-
vidually estimated. Baker and Bargman (1985) used
composite designs that allow fitting of cubic poly-
nomials to computational models in a few inputs.
When k is large, however, even a two-level resolu-
tion V fractional factorial experiment may be too
expensive to perform in a preliminary study.

The need to estimate a potentially large number
of linear-model coefficients from a small physical ex-
periment led Satterthwaite (1959) to introduce ran-
dom balance designs. The basic strategy of these de-
signs is to specify the values of each x; randomly and
then to investigate the marginal effect of each input
individually, ignoring the values actually selected for
the other inputs. He pointed out that under a first-
order model the least squares estimator of each coef-
ficient, ignoring the rest, is unbiased; the bias that
would be present were the entire design considered
to be fixed is absorbed into the variance of the es-
timator. Satterthwaite’s arguments were not fully
accepted for several reasons, however; see the dis-
cussion of Youden, Kempthorne, Tukey, Box, and
Hunter (1959) following Satterthwaite’s article. A
major argument against their use was their lack
of efficiency in estimating individual coefficients.

A randomzied experimental plan often used for
input screening with deterministic computational
models is the Latin hypercube design (Iman and Con-
over 1980). Latin hypercube designs were originally
introduced in the context of a different problem, the
estimation of the distribution of an output that prop-
agates as the result of a known joint distribution of
inputs (McKay, Beckman, and Conover 1979). As
in the case of random balance designs, the values of
each x; are independently generated using a restricted
random procedure. Each x; takes on n unique values
selected from n nonoverlapping intervals in its do-
main of interest.

A primary appeal of these randomized plans is
that, unlike central composite designs and fractional
factorials of given resolution, k does not necessarily
play a role in determining n. Satterthwaite appar-
ently felt that random balance designs were not an
attractive option for cases in which n > k; see Sat-
terthwaite and Budne (1959). Latin hypercube de-
signs have been applied, however, in situations in
which 7 is much greater than k; Iman and Conover
(1980) presented an example when k = 8 and n =
200 in which the identification of influential inputs is
based on partial correlation coefficients computed on
the ranks of the data.
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In Section 2, z different approach to identifying
the important inputs in a computational model
is proposed, intended specifically for those cases in
which 7 is to be of order k£ and no simplifying as-
sumptions about the form of the model are to be
used.

2. ELEMENTARY EFFECTS

For purposes of this article, each x; will be assumed
to be scaled to take on values in the interval [0, 1],
and the region of interest, ), will be assumed to
be the k-dimensional unit hypercube. If y is at least
once differentiable with respect to each input, 9;(x)
= dy/dx|, is a functional index of the influence of
x; on y. For example, 9,(x) may be exactly or ap-
proximately (a) zero over all values of x, (b) a non-
zero constant over all values of x, (¢) a nonconstant
function of x,, or (d) a nonconstant function of one
or more x;(j # i). These correspond, respectively,
to situations in which the effect of x; on y is said to
be (a) negligible, (b) linear and additive, (c) nonlin-
ear, or (d) involved in interactions with other inputs.
The guiding philosophy in this work is that a major
role of a preliminary experiment is to determine,
within reasonable uncertainty, which inputs may be
considered to have effects which are (a) negligible,
(b) linear and additive, and (c or d) other. The reason
for combining (c) and (d) here is that, where im-
portant nonlinearity or interaction exists, an exper-
iment of any design that is small relative to the num-
ber of inputs will generally not produce enough
information to resolve the nature of these effects; a
subsequent detailed experiment in only those inputs
whose effects are complicated is the appropriate stage
for this study.

Here, a “‘discretized”” approach following the pre-
ceding idea is proposed. Attention will be restricted
to a region of experimentation, w, which is a regular
k-dimensional p-level grid, where each x; may take
on values from {0, 1/(p — 1),2/(p = 1), ..., 1}.
The following discussion will be based on what will
be called the elementary effects attributable to each
input. For a given value of x, define the elementary
effect of the ith input as

di(x) = [y(x;, xa, . ..
Xitts « « xk) - y(x)]/A’ (1)

where x € w, except that x;, =1 — A and A is a
predetermined multiple of 1/(p — 1). (The devel-
opment to follow could easily be generalized to allow
assignment of potentially different values of p and A
to each input. Although some prior knowledge about
the function y might make this desirable, single val-
ues of p and A have been used here to simplify the
presentation.)

» Xi—1, X; + A’

The intent here is to discover useful information
about which inputs are important using a design in
which the number of runs is proportional to & (rather
than k2, etc.). Therefore, it seems reasonable that
the approach should be based on trying to discover
a fixed number of properties about the influence of
each input on y (rather than individual interactions
in an approximating polynomial model whose num-
ber grows with k). Here it is proposed that the finite
distribution of p*~[p — A(p — 1)] elementary ef-
fects associated with each input be estimated; for
input i, this distribution will be denoted by F,. A
large (absolute) measure of central tendency for F;
indicates an input with an important “overall’”” influ-
ence on the output. A large measure of spread in-
dicates an input whose influence is highly dependent
on the values of the inputs—that is, one involved in
interactions or whose effect is nonlinear. In partic-
ular, estimates of the means and standard deviations
of these distributions will be used as indicators of
which inputs should be considered important. The
sampling plans to be discussed provide random sam-
ples from each of these distributions on which such
estimates may be based.

3. PLANS FOR INDEPENDENT
RANDOM SAMPLING

In simplest form, randomly selecting a value from
F; requires random selection of a value of each x(Jj
=1,2,3,..., k) and evaluation of y twice, once
at the selected values and again after increasing x;
by the quantity A; these two runs would then yield
one elementary effect. This could be repeated r times
to produce a random sample of r elementary effects
from F;. If the procedure were performed for each
input, the result would be a random sample of r
values from each F; at a total cost of n = 2rk runs.
In this article, the economy of a design will be defined
to be the number of elementary effects it produces
divided by the number of experimental runs, so this
sampling scheme has an economy of . (I have in-
tentionally avoided use of the word “‘efficiency” here.
Although economy is closely related to statistical ef-
ficiency in the discussion of this section, the rela-
tionship is less direct for the plans of Sec. 5.) Note
that under this plan all rk observed elementary effects
are independently drawn.

More economical designs can be constructed if some
runs are used in computing more than one elemen-
tary effect. In this development, it will be convenient
to restrict attention to the case in which p is even
and A = p/[2(p — 1)]; the reason for this will be
clear shortly. To generate such designs, the first step
will be the selection of an m-by-k sampling matrix,
B, with elements that are 0’s and 1’s, which has
the key property that for every column i = 1, 2, 3,

TECHNOMETRICS, MAY 1991, VOL. 33, NO. 2
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..., k there are two rows of B that differ only in
their ith entries; for example,

0 0 0 0]
1 0 0 0
1 1 0 0
B=l 1 1 1 0 2)
11 1 1

(In this section m will always equal k + 1; this is
generalized in Sec. 5.) AB could be used as a design
matrix (i.e., each row a value for x) for which the
corresponding experiment would provide k elemen-
tary effects, one for each input, based on only k +
1 runs. These would not be random selections from
the distributions F,, F, . . . , Fy, however. To obtain
a random selection from each distribution, a ran-
domized version of the sampling matrix is employed
as follows:

1. Let D* be a k-dimensional diagonal matrix in
which each diagonal element is either +1 or —1 with
equal probability. Letting J,, , be the m-by-k matrix
of 1's, note that (1/2)[2B — J,.,)D* + J,.] is an
m-by-k matrix in which each column is either set
equal to its corresponding column in B or is deter-
mined by replacing 1’s for 0’s and 0’s for 1’s in the
corresponding column of B.

2. Let x* be a randomly chosen “base value” of
x for which each element is randomly assigned a
value from {0, 1/(p — 1),2/(p — 1), ...,1 — A},
each with equal probability.

3. LetP* be a k-by-k random permutation matrix
in which each column contains one element equal to
1 and all others equal to 0 and no two columns have
I’s in the same position, where each such matrix has
an equal probability of selection.

Attention is restricted to the case in which each
decision in the randomization process—that is, se-
lection of values for each element of D* and x* and
selection of P*—is made independently of all others.
Then B* = (J,,.x* + (4/2)[(2B — J,,.)D* + . ])P*
is called a random orientation of B. Like AB, B* also
provides one elementary effect per input, but one
which is randomly selected. [If it is desired to assign
values of p; and A; = p;/[2(p; — 1)] to each input,
step 2 of the randomization procedure would be
modified so that each element of x* takes a randomly
chosen value from the appropriate set and step 3
would be modified to permute columns only within
sets corresponding to inputs with equal values of p;
and A,.] Finally, if a sample of r effects is required
from each F;, r independent random orientations of
B can be concatenated to form the design matrix for
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the entire experiment:

B
x=|B 3)

B’

The preceding randomization scheme defines the
probabilities with which elementary effects are se-
lected with each orientation of B. To characterize
these probabilities, consider the two rows of B which
differ only in their ith elements,

X1 Xyttt Xiog Xy Xigy t Xy
B(i) = 5

Xy Xp st t Xy Xig Xipp 0 0 X
and the result of only the first two stages of the ran-
domization process on these rows; that is, J, x* +
(A72)[(2B(i) = J,.)D* + J,,]. Itis clear that in any
column except the ith, the two elements will be equal
and have one of the values

0+0, 1/(p—1)+0,

2(p - 1)+ 0,...,(1 -A4) +0,
0+ A, 1/(p—-1)+ A,
20p -1 +A,...,(1—-4)+A,

each with equal probability. If p is even and A has
been chosen to be p/[2(p — 1)], this list of values
reducesto 0, 1/(p — 1),2/(p = 1), .. ., (p — 2)/
(p — 1), and 1. Similarly, in column i the two un-
equal values willbe 0O and A, 1/(p — 1) and 1/(p —
1) + A,2/(p —1)and2/(p — 2) + A, ...,o0r1
— A and 1, each with equal probability. Since ran-
domization is applied independently in each column,
each of the p*~'[p — A(p — 1)] = p*/2 elementary
effects for input i has an equ&l probability of selection
following the first two randomization steps. It is easy
to see that the third step in the process does not
change this, since it is simply an independent shuf-
fling of input labels.

Although the third step of this randomization pro-
cedure is not necessary to ensure equal-probability
sampling from each F;, it results in a certain sym-
metric treatment of inputs which may be desirable.
For example, using only the first two steps in the
randomization process, inputs represented by the
central columns in B from Equation (2) are likely to
have a more even distribution of values in X than
those represented by the first and last columns. Add-
ing column permutation to the randomization pro-
cedure averages this potential “lumping” of values
across all columns and decreases the probability of
a severely imbalanced sample in any column.

Over the entire design X, r elementary effects are
produced for each input at a total cost of n = rm
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runs, so the economy of the sampling plan is rk/rm
= k/m, or k/(k + 1) for the sampling matrix of
Equation (2). The price of the increased economy is
nonindependence among samples from different F;;
within a single orientation of B, the elementary ef-
fects observed from the different F; have a restricted
random relationship. Since only one elementary ef-
fect is observed from each F; with each randomization
of B, however, the r observations within the sample
from each F; remain independent.

Since X produces a simple random sample, with
replacement, from each F;, the sample mean (d;)
and variance (S7) of the observed elementary effects
for input i are unbiased estimators of the mean and
variance of F;, and the standard error of the mean
can be estimated as SEM, = S,/Vr. Since the sample
is taken with replacement, two orientations of B can
produce the same elementary effect for a given input,
but the probability of this happening is reduced rap-
idly as k increases relative to r; in the range of most
practical applications, it may occur very infrequently.
When it does occur, it can be treated as in any other
sampling-with-replacement setting; for example, both
occurrences of the (same) elementary effect are in-
cluded in summary statistics. As an aside, duplication
of an elementary effect in a sample implies that at
least two pairs of rows in X are duplicates; in prac-
tice, some computational expense would be spared
because one run of the deterministic model will be
required for each distinct row in X.

3.1 Example

To demonstrate the basic idea of this article, an
artificial computational model with 20 inputs was
constructed as follows:

20 20

y=p+ Zﬁiwi + 2 i jWiW;

i<j
20 20
+ E .Bi,j.lWinWI + E ﬂi,j.[,swiijlws’
i<j<! i<j<l<s
where w; = 2(x; — 1) except fori = 3, 5, and 7,
where w; = 2(1.1x;/(x; + .1) — ). Coefficients of
relatively large value were assigned as

pi = +20, i=1,...,10,
pij = —15, Lj=1,...,6,
B = —10, iLjl=1,...,5,
and
Bijis = +5, Ljls=1,..., 4.

The remainder of first- and second-order coefficients
were generated independently from a normal distri-

bution with zero mean and unit standard deviation,
and the remainder of third- and fourth-order coef-
ficients were set to 0.

The 21-run, 20-factor sampling matrix of Equation
(2) was used, and r = 4 random orientations were
generated using p = 4 (A = %) to produce an 84-
run design. Based on the 84 computed values of y,
a random sample of four elementary effects was ob-
served for each of the 20 inputs. In Figure 1, the
mean and standard deviation of each sample of el-
ementary effects are displayed; numbers on the graph
identify the inputs. Two lines are also graphed, cor-
responding to d; = * 2 SEM,; if the coordinates for
input i lie outside of the wedge formed by these two
lines, one might interpret this, approximately, as sig-
nificant evidence that the expectation of F, is non-
Zero.

From a practical standpoint, judgment about the
importance of particular values of d, and S; will usu-
ally be context dependent. For example, d, = 76
would be declared significantly different from 0 by
comparison to SEM,. But in the context of a real
problem, it is important to decide whether an av-
erage change estimated to be 76 units in y due to a
change of 3 is scaled x, is physically meaningful and
whether a standard deviation estimated to be S, =
24 about this value, as one chooses d, values ran-
domly from over w, constitutes physically meaningful
variation. In the absence of such knowledge and for
purposes of this example, we may examine the plot-
ted values of Figure 1 relative to each other to see
which appear to be most important.

Inputs 1-10 are clearly separated from the cluster
of remaining outputs, which have means and stan-
dard deviations close to 0. In particular, inputs 8, 9,
and 10 have mean elementary effects that are sub-
stantially different from 0 while having small stan-
dard deviations. Considering both means and stan-
dard deviations together, one might (correctly in this
case) conclude that the first 10 inputs are important,
and that of these the first seven appear to have effects
that involve either curvature or interactions.

For comparison with what might be called a “stan-
dard method,” an 84-run Latin hypercube design
was also constructed and the corresponding experi-
ment performed using this model. (Actually, a pop-
ular variant of the original Latin hypercube design
was used; the randomized values included in each
column of the design matrix were .5/84, 1.5/84, 2.5/
84, ..., 83.5/84, rather than being random quan-
tities taken from 84 subintervals.) The ranks of the
observed values of y were then fit to a first-order
regression model in the inputs; the significance levels
for the model coefficients are listed in Table 1. Six
inputs had effects significant at the .05 level. Not

TECHNOMETRICS, MAY 1991, VOL. 33, NO. 2
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Figure 1. Estimated Means (d:) and Standard Deviations (S;) of the Distributions of Elementary Effects in the Example of

Section 3. Lines correspond to d; = +2 SEM,.

surprisingly, these were all among the truly active
factors and in four cases, were inputs not involved
in interactions. No coefficients had significance levels
between .05 and .10. Input screening based on these
values alone would result in missing some active in-
puts (4, 2, and perhaps S and 1), or including some
that are inactive (perhaps 20, 13, and 15), depending
on the significance value selected for screening. In
Section 4, some of the differences between Latin hy-
percube designs and those described here are dis-
cussed in more detail.

3.2 Selection of a Sampling Matrix

The sampling matrix B of Equation (2) when viewed
as a design matrix is an example of what statisticians

Table 1. Significance Levels for Latin Hypercube Design of

Section 3
Input p value Input p value
1 12 1 .69
2 .31 12 .67
3 .01 13 .23
4 41 14 .75
5 .20 15 .23
6 .01 16 .32
7 .0002 17 .96
8 .0002 18 .87
9 .0001 19 .81
10 .0001 20 .15

TECHNOMETRICS, MAY 1991, VOL. 33, NO. 2

often call one-factor-at-a-time (0.a.t.) designs; Dan-
iel (1973) offered an interesting discussion and sys-
tem of classification of o.a.t. designs. They have
historically received less attention than other main-
effects plans in the statistical literature because they
lead to least squares estimators of model coefficients
that are relatively imprecise in settings in which the
response variable contains random error.

Other (k + 1)-row sampling matrices exist that
allow calculation of one elementary effect per input.
Any such sampling matrix can, by reordering col-
umns and exchanging 0’s and 1’s within some col-
umns, be put in a standard form:

[0 0 o 0 ]
1 0 0 0
1 0

where each asterisk can be either 0 or 1, but such
that

the ith row of B differs from some row
above it in only the (i — 1)st element. (5)

For a proof of this, see the Appendix. As an aside,
Webb (1968) showed that under the usual first-order
linear model assumptions including random noise, in
the class of designs with design matrices of form (4),
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a necessary and sufficient condition for minimum
variance estimation of the model coefficients is (5).

All experimental plans generated by sampling
matrices satisfying (4) and (5) have the same econ-
omy, k/(k + 1). The following criterion is suggested
as a possible aid for selecting a sampling matrix from
this class. Let the random variable Z denote the num-
ber of runs in X for which a selected input appears
at a selected value. It is easy to show that, with
respect to the three-stage randomization described
previously,

E(Z) = nip (6)

and

m—1

V(Z) = (2ripk) ; j = (m/2)PC())

+ (mrip)[(1/2) = (1/p)], (7)

where C(j) is the number of columns of B containing
J I's. Since Equation (6) is independent of the sam-
pling matrix used, it describes a kind of expected
balance, which is a property of each design generated
by the sampling matrices of form (4) and (5). On the
other hand, V(Z) depends on B through the function
C, and it seems desirable to minimize this quantity
with respect to selection of B. For each value of k
up to 10, V(Z) was computed for each sampling
matrix in this class, and in each case the matrix which
minimizes V(Z) is the one described in Equation (2).
[For a given value of k, (k — 1)! matrices can be
constructed that satisfy Equations (4) and (5), but
this includes large groups of matrices that are equiv-
alent in that one may be transformed to another by
reversing symbols in some columns and reordering
rows. In the calculation just described, all sampling
matrices that minimize V(Z) are either of the form
displayed in Equation (2) or are equivalent to it in
this sense. ] I conjecture that this is also true for larger
k, but I have not proven it.

4. CONTRASTS WITH LATIN
HYPERCUBE SAMPLING

As noted previously, Latin hypercube sampling
(LHS) has become a popular technique for gener-
ating designs for computational experiments. These
designs have several appealing characteristics, in-
cluding the following:

LHSI1. Latin hypercube designs tend to be spread
fairly uniformly throughout Q.

LHS2. The projection of a Latin hypercube de-
sign into any subspace of {) formed by ignoring some
inputs is also a Latin hypercube design with the same
number of unique runs.

Property LHS1 is certainly appealing in the sense
that an exploratory experiment should intuitively
cover the region of interest as completely as possible
in the event that some subregion turns out to be
particularly interesting. Moreover, if y is a relatively
simple function of the inputs, property LHS1 may
imply that a useful approximation to y may be con-
structed from Latin hypercube data. The primary
attraction of property LHS2 is that if it turns out that
only a few inputs have important effects, the design
will likely be well distributed in the reduced input
space.

The designs described in Section 3 do not have the
properties just listed, but they do have the following,
which are not properties of Latin hypercubes:

OATI1. Randomized sampling matrices allow di-
rect observation of elementary effects.

OAT2. The projection of each randomized sam-
pling matrix into any subspace of () formed by ig-
noring some inputs is also a randomized sampling
matrix with one unique run lost for each dimension
ignored.

Property OAT?2 is much weaker than its counterpart
for Latin hypercubes; reduction to a lower dimension
is costly in terms of the loss of unique design runs.
If it turns out that several of the inputs have impor-
tant effects, however, property OAT1 guarantees that
information can be extracted for each input, and that
this information (a) is meaningful regardless of the
complexity of the input’s effect and (b) cannot pos-
sibly be mistakenly attributed to that input through
partial aliasing or confounding with effects actually
associated with other inputs.

The following artificial example illustrates a situ-
ation in which the designs introduced here may have
an advantage over Latin hypercube designs in the
input screening context. Define y as follows to have
100 inputs, where only the first 30 actually influence
the output:

30

y = > exp(5.5x; — 1.5%),

i=1

30

where X = (1/30) > x,.
i=1

The heavy curve in Figure 2 shows the cumulative
distribution of ,(x), uniformly sampled over Q. (Since
the first 30 inputs play symmetric roles in y, deriv-
atives taken with respect to inputs 2-30 would be
distributed identically; of course, derivatives with re-
spect to inputs 31-100 are 0 throughout Q.) Although
Yy is not monotonic in x;, 9,(x) is positive whenever
its absolute value is relatively large. Since y is a func-
tion of only 30% of the inputs, some degree of “effect
sparsity” (Box and Meyer 1986) is clearly present,
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Figure 2. Cumulative Distribution Functions of Elementary Effects (d,) and Derivatives (3,) for Input 1 in the Example of Sec-

tion 4.

although perhaps not so much as may often be im-
plied by that phrase. The term involving X intro-
duces some interaction among the inputs, and the
exponential form results in strong curvature in the
effects.

One hundred Latin hypercube designs in n = 303
runs were generated, and for each of these the rank-
transformed y values were fit to all inputs by multiple
linear least squares. (As in the example of Sec. 3,
each x; took on 303 equally spaced values, randomly
assigned to runs; regression on these input values is
therefore equivalent to regression on their ranks.)
The importance of each input was assessed by the
usual ¢ statistic associated with the corresponding
regression coefficient; those with values of 2 or greater
were declared to be important. Using this rule, the
overall proportion of tests that indicated that one of
the first 30 inputs was important was .634, and the
corresponding proportion for inputs 31-100 was .048.
Hence on average one might expect to correctly iden-
tify 19 or 20 of the 30 important inputs and incorrectly
identify 3 or 4 of the unimportant inputs with this
procedure.

For comparison, consider any design of the form
discussed in Section 3 in p = 6 levels (A = 3/5) and
n = 303 runs. For each of inputs 1-30, a simple
random sample of three elementary effects would be
drawn from a population with cumulative distribu-
tion graphed as the lighter curve in Figure 2. In Fig-
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ure 3, contours of the joint cdf of |d;| and S, are
graphed. Note that in less than 10% of such samples
would both statistics have values less than 20; 75%
of the time either the absolute value of the mean
would be greater than 25 or the standard deviation
would be greater than 35. Of course, all samples of
elementary effects associated with inputs 31-100 would
contain only zeros.

Admittedly, this example function is much simpler
than computational codes encountered in practice;
for example, all important inputs have the same ef-
fect, and all others have absolutely no effect at all.
Yet it presents one situation in which an o.a.t. ap-
proach seems much more likely to succeed in screen-
ing inputs than the use of rank analysis of data from
an LHS. It should be stressed, however, that the
designs described here are not suggested as compet-
itors for Latin hypercube designs. Indeed, they are
unattractive alternatives in the cases for which Latin
hypercube designs may be best suited—for example,
relatively few important inputs with effects that are
not highly nonlinear or interactive. An important
distinction seems to be that, using a Latin hypercube
design, the effect of any one input can only be as-
sessed either by ignoring the other inputs or by ad-
justing for them using some assumed approximating
model, at least in the rank data. The designs dis-
cussed here are intended for situations in which sev-
eral inputs may have complex effects, and the type
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Figure 3. Contours of the Joint Cumulative Distribution Function of the Absolute Value of the Mean (|d:|) and Standard
Deviation (S,) of a Sample of Three Elementary Effects for Input 1 in the Example of Section 4.

of analysis required by the Latin hypercube design
seems risky.

5. PLANS FOR CLUSTER SAMPLING

In the designs discussed in Section 3, the sampling
matrix B was constructed to yield one elementary
effect for each input. In this section, sampling matri-
ces with m > k + 1 rows, which yield more than
one elementary effect for each input, are considered.
These can be constructed for two different reasons,
to increase the economy of the resulting design or
to ensure some degree of separation (in (1) of the
sampled elementary effects for each input.

5.1 Cluster Sampling for Increased Economy

Consider first the sampling matrix

[0 0 0 0]

1000

0100
B=|1100 8)

1110

1101

_1111j

One random orientation of B yields two elementary
effects for each input at a cost of less than two runs
per input, so a design constructed from this sampling
matrix has higher economy then the designs dis-

cussed in Section 3. The result is not a simple random
sample of size 2 from each F;, however, because pairs
of elementary effects for the same input are selected
together. As will be discussed, this may be thought
of as a cluster sample (e.g., Cochran 1977) of cluster
size 2. So a sampling matrix that provides more than
one elementary effect per input per orientation will
be referred to as a cluster sampling matrix and the
resulting design as a cluster design.

As usually defined, cluster sampling actually refers
to situations in which the sampling unit is a subset
of the population of interest and the subsets available
for sampling constitute a partition of that population.
The collection of elementary effects for a given input,
sampled as a result of a randomized orientation of
B, does not constitute a cluster from the population
of interest in this sense. Valid inferences about F,
can, however, be obtained by treating this collection
as if it were a cluster sample. To see this, let the
number of elementary effects observed for each input
from one orientation of B be c; in the preceding
example ¢ = 2. Moreover, suppose that these sam-
pled elementary effects are arbitrarily labeled by the
order in which they can be calculated by examining
B* row by row from top to bottom as d!, 42, . . .,
d for input i. Following the arguments of Section 3,
each of the d] can be any one of the p*/2 possible
elementary effects attributable to input i with equal
probability. This means that, of the p*k! equally
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probable random orientations of B, 2k! of them lead
to any particular realization for each d/. But no two
ofd}, d}, ..., d can yield the same realization on
a given orientation, unless B contains duplicate rows.
Hence 2ck! of the possible orientations of B lead to
selection of any given elementary effect. Therefore,
our sampling plan is equivalent to cluster sampling
from an artificial population containing 2ck! com-
plete copies of the actual population of interest. But
since the distribution of this population is the same
as that of the population of interest—that is, F,—
inferences about that distribution can be drawn using
the standard tools of cluster sampling.

One series of designs that yields more than one
elementary effect per run can be generated by sam-
pling matrices of form

r0 [1] 0 0-
C 0 0O 0
13 ¢ o 0
B=14y 1 ¢ o|° ©®
e

where o is a g-element row vector of 0’s, O and J
are p X q matrices of 0’s and 1’s, respectively, and
Cis a p X g matrix of both 0’s and 1’s. In this
investigation, selection of C has been limited as fol-
lows. Once a value of g has been determined, allow-
able rows for C are grouped by the number of 1’s
they contain; group 1 contains all g-element vectors
with a single 1 and the remainder 0’s, group 2 con-
tains all vectors with two 1’s and the rest 0’s, and so
forth through group g. (Group 0, the single vector
of g 0’s is not included here because it is redundant.)
A matrix C is then constructed of entire groups of
rows; for example, either all of group 1 appears or
no row with a single 1 appears. C is thus a special
case of a balanced array of strength g. Selection of
these groups determines the value of p and hence
the row dimension of B.

The number of elementary effects provided (per
input, per orientation) by the sampling matrix of
equation (9) is

mwmr+gﬂi—DM)@jf)

where /(i) is 1 if group i is included and 0 otherwise.
In Table 2, sampling matrices from this series are
listed that yield the indicated number of elementary
effects per orientation with a minimum number of
runs, where the number of rows in B is less than 4k.

The sampling matrix of Equation (9) has not been
shown to be optimal with respect to economy. This
form is tried here primarily because of its similarity
to that of Equation (2). More economical plans may
well exist.
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Table 2. Approximate (large k) Economies for Some
Designs Generated by Equation (9)

Elementary effects Approximate

q Groups (m — 1)/k per input economy
2 1,2 1.50 2 1.33
3 1,2,3 2.33 4 1.7
5 1,2,5 3.20 5 1.56
5 3,4,5 3.20 5 1.56
4 1,2,3 3.50 6 1.71
4 1,2,3,4 3.75 8 2.13

5.2 Cluster Sampling for Separation of
Elementary Effects

A second reason for using cluster sampling is to
ensure that the elementary effects sampled for each
input will be separated, to some degree, in Q. For
example, each orientation of

[0 0 o -~ 0o o]
1 0 o0 0 0
1 1 0 0 0
111 0 0

B=|1 1 1 11 (10)

0 1 1 11
0 0 1 11
0 0 0 11

yields ¢ = 2 elementary effects from each F, at a cost
of m = 2k runs. The economy of designs constructed
with this sampling matrix is roughly that of those
discussed in Section 3, about one elementary effect
per run. Within each sampled pair, however, the two
observed elementary effects represent response dif-
ferences along opposite edges of a hypercube of edge
length A [rather than, for example, adjacent edges
as in the sampling matrix of Eq. (8)]. In some cases,
this may increase our ability to detect spread in the
distribution of each F,. [An alternative justification
might be based on the fact that since B is a foldover
(Box and Wilson 1951) of a resolution III 0.a.t. de-
sign matrix, each random orientation is a complete
resolution IV design.]

5.3 Parameter Estimation

The mean of F, may be estimated from a cluster
sample using the same estimator as would be used
with an independent random sample—for example,
the sample average. As discussed by Cochran ( 1977),
an unbiased estimator of the variance of F, is

St= [(p*k! = 1S, + pik!(c — 1)8%,]
+(cptk! — 1),
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where §7, and S?,, are the among- and within-cluster
mean squares, respectively, from an analysis of vari-
ance of the observed elementary effects for input .
This is nearly identical to the approximation §? =
[$2, + (¢ — 1)8%,)/c. The standard error of the
mean of elementary effects for input i can be esti-
mated as

SEM, = S../Vre. (11)
5.4 Example

Next, an experiment is described that was based
on a cluster design, performed to investigate prop-
erties of the computational model TWOLAYER,
which was developed by Alan Solomon and his col-
leagues at the Oak Ridge National Laboratory.
TWOLAYER models heat transfer into, out of, and
through a wall containing two layers of possibly dif-
ferent phase-change materials. Heat is applied to the
wall during a 10-hour charge cycle, during which time
some of the phase-change material melts. During the
following 14 hours (the discharge cycle), heat is re-
leased from the wall as the phase-change material
solidifies.

In this experiment, effects of £k = 20 inputs were
investigated; they are material properties and phys-
ical dimensions of the phase-change materials and
are listed in Table 3. Each input was scaled so that
0 and 1 represent 90% and 110%, respectively, of a
nominal value. The output investigated was a “utility
index,” which takes on values in the interval [0, 1]
and is a measure of the effectiveness of the wall as
a heat-storage device. The experiment was per-
formed on a Cray X/MP computer, and each run of
the model required approximately 20 seconds of ma-
chine time.

The sampling matrix used to generate the design
is

[0 0 o o o]
B, O O 0 O
g_|Y B O OO
J J B, O O}’
J J J B, O
JJJJBId
where
1 000
11 00
1 110
B,=|111 1|,
0111
0011
[0 0 0 1]

0 and J are 7 X 4 matrices of 0’s and 1’s respectively,
and o = (0, 0, 0, 0). This sampling matrix generates

Table 3. Inputs Used in the TWOLAYER Experiment of
Section 5

Input number Input description

1 Liquid conductivity of left-layer material
2 Solid conductivity of left-layer material
3 Liquid conductivity of right-layer material
4 Solid conductivity of right-layer material
5 Liquid specific heat of left-layer material
6 Solid specific heat of left-layer material
7 Liquid specific heat of right-layer material
8 Solid specific heat of right-layer material
9 Liquid density of left-layer material

10 Solid density of left-layer material

1 Liquid density of right-layer material

12 Solid density of right-layer material

13 Latent heat of left-layer material

14 Melt temperature of left-layer material

15 Latent heat of right-layer material

16 Melt temperature of right-layer material

17 Width of left layer

18 Width of right layer

19 Charge film coefficient

20 Discharge film coefficient

a design with economy 1.11 and yields two elemen-
tary effects for each input, d;(x!) and d;(x?), for which
x' and x? differ by an amount A in three elements.
Note that this sampling matrix is not in the class
discussed in Section 5.1; even though B is of the form
described in Equation (9), B, is not a balanced array.
This particular sampling matrix was chosen as a kind
of compromise between the two types of cluster plans
described in Sections 5.1 and 5.2 in that it generates
a design with slightly better economy than the plans
of Section 3 while ensuring some separation between
the elementary effects within each cluster for each
input. r = 3 orientations of B were used, each spec-
ifying m = 36 experimental runs, for a total of 108
runs in the experiment.

Results of the experiment are displayed in Figure
4, where (d;, S;) is plotted for each input. Points for
which |d;| > 2 SEM, as computed using Equation
(11) are marked in boxes. For 11 of the 20 inputs,
estimated means and standard deviations were both
exactly 0. This is probably due, at least in part, to
the fact that TWOLAYER is a finite element code
in which the wall thickness is represented by (in this
case) 10 discrete nodes; at a particular point in time,
if three nodes represent the liquid state and seven
represent the solid state, the modeled wall is said to
be 30% liquid. As a result, there were only 23 distinct
values of y produced in the 108 runs of the model.
Although accuracy of the simulation would undoubt-
edly be improved by increasing the number of nodes
and consequently the amount of computer time needed
for each run, numerical curiosities of this type are
not an uncommon result of computational experi-
ments.
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Figure 4. Estimated Means (d;) and Standard Deviations (S)) of the Distributions of Elementary Effects in the Example of

Section 5. Inputs for which [d| > 2 SEM; are marked in boxes.

Of the remaining inputs, numbers 16 and 17 (melt
temperature of the right-layer material and width of
the left layer) have consistently large negative ele-
mentary effects. Inputs 1, 5, 9, 11, 12, 18, and 19
also have nonzero means, but each has a substantial
standard deviation relative to its mean, indicating
potentially extensive patterns of interaction or cur-
vature in the effects. This is at least partially caused
by the discreteness of the code noted previously.

For comparison, a second experiment was also run
using a Latin hypercube design in 108 runs. Regres-
sion of the rank-transformed response values on the
20 inputs yielded an R? value of .91 and in this case
led to conclusions similar to those just described. The
inputs associated with model coefficients significant
at the .05 level are nearly the same as the nine pre-
viously indicated as important; the differences are
that input 18 is not significant at the .05 level and
input 15 is. It is interesting to note that input 18 was
the single input for which both positive and negative
elementary effects were observed in the first analysis.
Inputs 4, 8, and 18 would also be selected as impor-
tant if a significance level of .10 were used, although
if about 10 inputs really are unimportant, the less
stringent significance level could easily lead to at least
one “false positive.” The ranges of response values
observed in the two experiments were similar, about
.2 to .4. It is interesting to note, however, that all
108 response values in the Latin hypercube experi-
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ment were distinct. On the other hand, if only the
first two significant digits of y are considered, only
10 values are distinct in this data set compared to 13
in the first experiment.

6. SUMMARY AND DISCUSSION

In this article, experimental plans have been de-
scribed for the purpose of collecting random samples
from the distributions of elementary effects associ-
ated with each input. These plans require about one
model evaluation per elementary effect sampled
for independent random sampling and can be con-
structed with fewer evaluations per elementary effect
for cluster sampling. For a given fixed sample size
to be obtained from each F;, these plans then require
a total number of runs, which is a linear function of
k, as opposed, for example, to resolution V fractional
factorial plans for which the number of runs required
is of order k2.

There are certainly situations, however, in which
even this number of evaluations is considered too
large for an exploratory study. When model evalu-
ations are extremely expensive or k is very large, it
may be important to learn something based on an
experiment in which #» may be considerably less than
k, even though it must be recognized that this in-
formation will not be as complete or conclusive as
what might be desired. In the framework of more
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conventional fractional factorial experiments, Wat-
son (1961) and others developed the idea of group
screening for instances in which it is believed that
most factors have little or no effect on the response.
The basic idea is to intentionally confound factors in
groups for the purpose of screening. For example,
if k factors are completely confounded within groups
of size 3, a screening design for the k/3 ““group fac-
tors” may be used to isolate the relatively few im-
portant factors, which are investigated more thor-
oughly in subsequent experimentation. Typically,
when the effect due to a group factor is negligible,
it is concluded that the individual constituent factors
are negligible. Although this may be an incorrect
conclusion in some cases, it often effectively isolates
most of the important factors quickly when inter-
actions are absent, grouping of factors is randomized,
and the effect sparsity assumption is correct. A sim-
ilar approach to group screening could be based on
the designs presented here. If inputs are confounded
in groups of size 3, this leads to three-at-a-time sam-
pling matrices, which can be constructed in approx-
imately 3 of the original number of runs. Then with
some chance of error the list of potentially important
inputs may be shortened earlier.

It must be admitted that there is something intu-
itively unappealing about an analysis that selectively
“ignores’’ information. Once x has been selected and
the resulting y observed, the modeler cannot be blamed
for wanting to use all of the x vector in the analysis.
The suggested practice of looking at sample statistics
from each F; is clearly not a fully efficient analysis in
the sense that it ignores the “‘location’ of the sampled
elementary effects in w. When one or more of the
samples from the F, contain unusual values, their
location can be observed after sampling and some
conclusions may be drawn about the nature of in-
teraction. For example, if the observed d, values are
always unusually high when x; = 1 and x,, = 0, this
hints at the existence of an important three-factor
interaction. This line of thinking is more akin to the
analysis proposed by Satterthwaite, however, and
shares its weakness of trying to make fine distinctions
about the specific nature of inputs given (relatively)
very little data.

It should be reiterated for clarity that the problem
treated here is fundamentally different from the
problem addressed by McKay et al. (1979) in their
introduction of the LHS, in which the primary ob-
jective was the efficient empirical determination of
the distribution of y that follows from a known mul-
tivariate distribution of x. This is often appropriate
when inputs represent uncontrolled quantities that
vary over time or space, in which case the distribution
attached to the inputs may have a frequentist inter-
pretation. Alternatively, the inputs may represent

fixed but unknown physical constants, and the input
distribution may reflect subjective uncertainty about
their values. Our interest here is in the more fun-
damental issue of which inputs influence the output
in an important way, leaving aside questions of how
inputs, or our assessments of them, might change
with time or improved measurements. This philos-
ophy is consistent with applications in which codes
like TWOLAYER are used; most inputs represent
physical characteristics that can be controlled more
or less exactly by the experimenter, and the goal is
to identify which of them can be used to adjust im-
portant characteristics (outputs of the code) of the
modeled system.

An important aspect of real computational models
not discussed here is the typically large number of
output variables produced by a single model run.
These may represent different modeled characteris-
tics of the system of interest or values of the same
characteristic varying over simulated time. In fact
the utility index of the TWOLAYER example is a
scalar function of a multivariate output representing
the phase of material at different points in space over
a length of time. Such summary functions can often
be used to reduce the cumbersome dimensionality of
model output while preserving information about the
most important aspects of the model. Alternatively,
an approach of the type suggested here could be used
to individually analyze several output variables re-
corded in the same computational experiment. More
sophisticated approaches, which could take advan-
tage of any relationships existing among output vari-
ables, would certainly be useful.

The underlying challenge in the input screening
problem is that of identifying as many of the inter-
esting effects of x on y as possible using as few runs
as possible. When it is reasonable to assume some
simplicity in the structure of y—for example, effect
sparsity and monotonicity—screening methods based
on Latin hypercube designs or fractional factorials
are effective and economical. The approach sug-
gested here leads to reliable information about how
each element of x influences y, whether properties
of simplicity are present or not, and is particularly
useful when an assumption that these properties hold
cannot be justified.
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APPENDIX: A PROPERTY OF MATRICES
DESCRIBED BY EQUATIONS (4) AND (5)

Theorem. A sampling matrix B of m = k + 1
rows can provide one elementary effect for each input
iff it can be rewritten in the form of (4) and (5) by
reordering columns and exchanging 0’s and 1’s in
some columns.

Proof. The proof is based on the following ob-
servation: If any sampling matrix of m = k + 1 runs
is divided into two groups of runs, there must be at
least one “‘split” pair of runs (i.e., one in each group)
that differ only in the value of a single input. To see
this, suppose that it is not so and that such a sampling
matrix has been partitioned into two such groups
without a split pair. Since there are no split pairs, it
is possible to exchange 0’s and 1’s for some of the
inputs within one group without changing the num-
ber of elementary effects which can be obtained from
each F;. Furthermore, this can clearly be done in
such a way that some run in the first group becomes
identical to some run in the second group. But then
one of these two runs could be deleted without di-
minishing the number of elementary effects that can
be observed. This is impossible, however, because
the reduced sampling matrix could be used as a res-
olution III design matrix for k factors in fewer than
k + 1 runs.

Based on this observation, the theorem can be
proven easily by construction. Given any sampling
matrix of m = k + 1runs, pick any run and exchange
0’s and 1’s for some inputs (throughout the design)
so as to transform this run to a vector of 0’s; call this
the “first run.” The preceding observation implies
that there must be at least one run in the remainder
of the design that differs from the first run by only
the values of a single input. Find such a run, reorder
the columns of the design so that input that differs
is the first input, and call this the “second run.” Now
the observation implies that there must be at least
one run in the remainder of the design that differs
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from either the first or second run by only the values
of a single input. Find such a run, reorder the col-
umns 2-k of the design so that input which differs is
the second input, and call this the “third run.” This
process is continued through identification of a “(k
+ 1)st run”; the resulting design will have the prop-
erties described.

[Received September 1989. Revised November 1990.]
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